The larvae of black soldier fly (BSFL) convert organic waste into insect proteins used as feedstuff for livestock and aquaculture. BSFL production performance is considerably reduced during winter season. Herein, the intraspecific diversity of ten commercial BSF colonies collected in China was evaluated. The Bioforte colony was subjected to selective breeding at 12 °C and 16 °C to develop cold-tolerant BSF with improved production performance. After breeding for nine generations, the weight of larvae, survival rate, and the dry matter conversion rate significantly increased. Subsequently, intestinal microbiota in the cold-tolerant strain showed that bacteria belonging to Morganella, Dysgonomonas, Salmonella, Pseudochrobactrum, and Klebsiella genera were highly represented in the 12 °C bred, while those of Acinetobacter, Pseudochrobactrum, Enterococcus, Comamonas, and Leucobacter genera were significantly represented in the 16 °C bred group. Metagenomic revealed that several animal probiotics of the Enterococcus and Vagococcus genera were greatly enriched in the gut of larvae bred at 16 °C. Moreover, bacterial metabolic pathways including carbohydrate, lipid, amino acids, and cofactors and vitamins, were significantly increased, while organismal systems and human diseases was decreased in the 16 °C bred group. Transcriptomic analysis revealed that the upregulated differentially expressed genes in the 16 °C bred groups mainly participated in Autophagy-animal, AMPK signaling pathway, mTOR signaling pathway, Wnt signaling pathway, FoxO signaling pathway, Hippo signaling pathway at day 34 under 16 °C conditions, suggesting their significant role in the survival of BSFL. Taken together, these results shed lights on the role of intestinal microflora and gene pathways in the adaptation of BSF larvae to cold stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2024.02.007 | DOI Listing |
J Orthop Surg Res
January 2025
Department of Knee Surgery, The First Hospital of Hebei Medical University, Hebei, China.
Objective: This study aims to explore the potential role of mesenchymal stem cells (MSCs) in the treatment of osteoarthritis (OA), particularly the function of the NOTCH1 signaling pathway in maintaining the stemness of MSCs and in chondrocyte differentiation.
Methods: Utilizing diverse analytical techniques on an osteoarthritis dataset, we unveil distinct gene expression patterns and regulatory relationships, shedding light on potential mechanisms underlying the disease. Techniques used include the culture of MSCs, induction of differentiation into chondrocytes, establishment of stable cell lines, Western Blot, and immunofluorescence.
Eur J Med Res
January 2025
Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
Objectives: SOX10 is crucially implicated in various cancer, yet the regulatory role in pancreatic cancer (PC) remains enigmatic. Underlying molecular mechanisms of SOX10 in PC were explored in our study.
Methods: Relationships between SOX10 and immune landscape were estimated using bioinformatic approaches.
Cancer Cell Int
January 2025
Department of Otolaryngology, Pudong Gongli Hospital, Shanghai, 200135, China.
Background: Specific molecular mechanisms by which AURKA promoted LSCC metastasis were still unknown.
Methods: Bioinformatic analysis was performed the relationship between TRIM28 and LSCC. Immunohistochemistry, Co-IP assay, Rt-PCR and Western Blot were used to examine the expression of related molecular.
Mol Med
January 2025
Department of Gastroenterology and Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, ShengJing Hospital of China Medical University, SanHao Street No. 36, HePing District, Shenyang, 110000, Liaoning, China.
The lack of knowledge about the mechanism of hyperoxia-induced intestinal injury has attracted considerable attention, due to the potential for this condition to cause neonatal complications. This study aimed to explore the relationship between hyperoxia-induced oxidative damage and ferroptosis in intestinal tissue and investigate the mechanism by which hyperoxia regulates inflammation through ferroptosis. The study systematically evaluated the effects of hyperoxia on oxidative stress, mitochondrial damage, ferroptosis, and inflammation of intestinal epithelial cells both in vitro and in vivo.
View Article and Find Full Text PDFCell Mol Biol Lett
January 2025
Department of Orthopaedics, Peking University Third Hospital, Peking University, No.49 NorthGarden Road, Haidian District, Beijing, 100191, Beijing, China.
Background: Epigenetic modifications have been proved to play important roles in the spinal degenerative diseases. As a type of noncoding RNA, the microRNA (miRNA) is a vital class of regulatory factor in the epigenetic modifications, while the role of miRNAs in the regulation of epigenetic modifications in ligamentum flavum hypertrophy (LFH) has not been fully investigated.
Methods: The miRNA sequencing analysis was used to explore the change of miRNA expression during the fibrosis of ligamentum flavum (LF) cells caused by the TGF-β1 (10 ng/ml).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!