The multiscale approach in designing substrates for regenerative medicine endows them with beneficial properties determining their performance in the body. Substrates for corneal regeneration should reveal the proper transparency, mechanical properties and microstructure to maintain the functionality of the regenerated tissue. In our study, series of non-wovens with different fibres orientation (random (R), aligned (A)), topography (shish-kebab (KK), core-shell (CS)) and thickness were fabricated via electrospinning. The samples were assessed for mechanical (static tensile test) and optical properties (spectroscopy UV-Vis). The research evaluated the impact of different microstructures on the viability and morphology of three cell lines (Hs 680, HaCaT and RAW 264.7). The results showed how the fibres arrangement influenced mechanical behaviour of the non-wovens. The randomly oriented fibres were more elongated (up to 50 mm) and had a lower maximum tensile force (up to 0.46 N). In turn, the aligned fibres were characterized by lower elongation (up to 19 mm) and higher force (up to 1.45 N). The conducted transparency tests showed the relation between thickness (of the non-woven and fibres) and morphology of the substrate and light transmission. To simulate the in vivo conditions, prior to the light transmission studies, samples were immersed in water. All the samples exhibited high transparency after immersion in water (>80%). The impact of various morphologies was observed in the in vitro studies. All the samples proved high cells viability. Moreover, the substrate morphology had a significant impact on the orientation and arrangement of the fibroblast cytoskeleton. The aligned fibres were oriented in exactly the same direction. The conducted research proved that, by altering the non-wovens microstructure, the properties can be adjusted so as to induce the desirable cellular reaction. This indicates the high potential of electrospun fibres in terms of modulating the corneal cell behaviour in response to the implanted substrate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2024.106437 | DOI Listing |
Int J Mol Sci
January 2025
Cell Engineering Laboratory, La Paz University Hospital Health Research Institute, IdiPAZ, 28046 Madrid, Spain.
The World Health Organization estimates that approximately 285 million people suffer from visual impairments, around 5% of which are caused by corneal pathologies. Currently, the most common clinical treatment consists of a corneal transplant (keratoplasty) from a human donor. However, worldwide demand for donor corneas amply exceeds the available supply.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang 550001, China.
Corneal injury is prevalent in ophthalmology, with mild cases impacting vision and severe cases potentially resulting in permanent blindness. In clinical practice, standard treatments for corneal injury involve transplantation surgery combined with pharmacological therapy. However, surgical sutures exhibit several limitations, which can be overcome using tissue adhesives.
View Article and Find Full Text PDFCell Transplant
January 2025
Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.
The eye represents a highly specialized organ, with its main function being to convert light signals into electrical impulses. Any damage or disease of the eye induces a local inflammatory reaction that could be harmful for the specialized ocular cells. Therefore, the eye developed several immunoregulatory mechanisms which protect the ocular structures against deleterious immune reactions.
View Article and Find Full Text PDFTransl Vis Sci Technol
January 2025
UCL Institute of Ophthalmology, University College London, London, UK.
Purpose: A human model able to simulate the manifestation of corneal endothelium decompensation could be advantageous for wound healing and future cell therapy assessment. The study aimed to establish an ex vivo human cornea endothelium wound model where endothelium function can be evaluated by measuring corneal thickness changes.
Methods: The human cornea was maintained in an artificial anterior chamber, with a continuous culture medium infusion system designed to sustain corneal endothelium and epithelium simultaneously.
Carbohydr Polym
March 2025
Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan; Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan; Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan; Center for Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan. Electronic address:
In this study, we aimed to develop ion-responsive and biocompatible alginate-capped nanoceria (Ce-ALG) for β-1,3-glucan (i.e., wound healing agent) delivery and corneal abrasion (CA) treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!