The mounting global energy demand urges surplus electricity generation. Due to dwindling fossil resources and environmental concerns, shifting from carbon-based fuels to renewables is vital. Though renewables are affordable, their intermittent nature poses supply challenges. In these contexts, aqueous flow batteries (AFBs), are a viable energy storage solution. This study tackles AFBs' energy density and efficiency challenges. Conventional strategies focus on altering molecule's solubility but overlook interface's transport kinetics. We show that triggering electrostatic forces at the interface can significantly enhance the mass transport kinetics of redox active molecules by introducing a powerful electrostatic flux over the diffusional flux, thereby exerting a precise directionality on the molecular transport. This approach of controlling the directionality of molecular flux in an all iron redox flow battery amplifies the current and power rating with approximately 140 % enhancement in the energy density.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.02.074DOI Listing

Publication Analysis

Top Keywords

molecular transport
8
iron redox
8
redox flow
8
flow batteries
8
electrostatic forces
8
energy density
8
transport kinetics
8
directionality molecular
8
directional molecular
4
transport
4

Similar Publications

Insight into the Mechanism of d-Glucose Accelerated Exchange in GLUT1 from Molecular Dynamics Simulations.

Biochemistry

January 2025

BHF Centre of Research Excellence, School of Medicine and Life Sciences, King's College London, London SE1 9NH, United Kingdom.

Transmembrane glucose transport, facilitated by glucose transporters (GLUTs), is commonly understood through the simple mobile carrier model (SMCM), which suggests that the central binding site alternates exposure between the inside and outside of the cell, facilitating glucose exchange. An alternative "multisite model" posits that glucose transport is a stochastic diffusion process between ligand-operated gates within the transporter's central channel. This study aims to test these models by conducting atomistic molecular dynamics simulations of multiple glucose molecules docked along the central cleft of GLUT1 at temperatures both above and below the lipid bilayer melting point.

View Article and Find Full Text PDF

ABT, Elacridar and Bile-Duct Cannulated Rats: Tools to Understand Pharmacokinetics.

ChemMedChem

January 2025

NRG Therapeutics, Stevenage, United Kingdom.

Optimizing pharmacokinetics is an integral part of drug design, albeit a lesser understood one from the medicinal chemist's perspective. Over the years, molecular tools and experimental strategies have been developed to better understand the fate of compounds. Among these, the use of aminobenzotriazole (ABT), elacridar and bile-duct cannulated rats have been instrumental in gaining valuable PK insights, with a direct impact on drug design.

View Article and Find Full Text PDF

Simulated microgravity predisposes kidney to injury through promoting intrarenal artery remodeling.

FASEB J

January 2025

Department of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, National Clinical Research Center for Kidney Diseases, Nephrology Institute of the Chinese People's Liberation Army, Chinese PLA General Hospital, Beijing, China.

Spaceflight-induced multi-organ dysfunction affects the health of astronauts and the safety of in-orbit flight. However, the effect of microgravity on the kidney and the underlying mechanisms are unknown. In the current study, we used a hindlimb unweighting (HU) animal model to simulate microgravity and employed histological analysis, ischemia-reperfusion experiments, renal ultrasonography, bioinformatics analysis, isometric force measurement, and other molecular experimental settings to evaluate the effects of microgravity on the kidneys and the underlying mechanisms involved in this transition.

View Article and Find Full Text PDF

Aerolysin Nanopore Electrochemistry.

Acc Chem Res

January 2025

Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

ConspectusIons are the crucial signaling components for living organisms. In cells, their transportation across pore-forming membrane proteins is vital for regulating physiological functions, such as generating ionic current signals in response to target molecule recognition. This ion transport is affected by confined interactions and local environments within the protein pore.

View Article and Find Full Text PDF

The NMDAR-BK channelosomes as regulators of synaptic plasticity.

Biochem Soc Trans

January 2025

Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud-sección Medicina, Universidad de La Laguna, Tenerife, ES-38071, Spain.

Large conductance voltage- and calcium-activated potassium channels (BK channels) are extensively found throughout the central nervous system and play a crucial role in various neuronal functions. These channels are activated by a combination of cell membrane depolarisation and an increase in intracellular calcium concentration, provided by calcium sources located close to BK. In 2001, Isaacson and Murphy first demonstrated the coupling of BK channels with N-methyl-D-aspartate receptors (NMDAR) in olfactory bulb neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!