The histone deacetylase SRT2 enhances the tolerance of chrysanthemum to low temperatures through the ROS scavenging system.

Plant Physiol Biochem

Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, China. Electronic address:

Published: February 2024

Low temperatures can severely affect plant growth and reduce their ornamental value. A family of plant histone deacetylases allows plants to cope with both biotic and abiotic stresses. In this study, we screened and cloned the cDNA of DgSRT2 obtained from transcriptome sequencing of chrysanthemum leaves under low-temperature stress. Sequence analysis showed that DgSRT2 belongs to the sirtuin family of histone deacetylases. We obtained the stable transgenic chrysanthemum lines OE-2 and OE-12. DgSRT2 showed tissue specificity in wild-type chrysanthemum and was most highly expressed in leaves. Under low-temperature stress, the OE lines showed higher survival rates, proline content, solute content, and antioxidant enzyme activities, and lower relative electrolyte leakage, malondialdehyde, hydrogen peroxide, and superoxide ion accumulation than the wild-type lines. This work suggests that DgSRT2 can serve as an essential gene for enhancing cold resistance in plants. In addition, a series of cold-responsive genes in the OE line were compared with WT. The results showed that DgSRT2 exerted a positive regulatory effect by up-regulating the transcript levels of cold-responsive genes. The above genes help to increase antioxidant activity, maintain membrane stability and improve osmoregulation, thereby enhancing survival under cold stress. It can be concluded from the above work that DgSRT2 enhances chrysanthemum tolerance to low temperatures by scavenging the ROS system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2024.108405DOI Listing

Publication Analysis

Top Keywords

low temperatures
12
histone deacetylases
8
leaves low-temperature
8
low-temperature stress
8
cold-responsive genes
8
dgsrt2
6
chrysanthemum
5
histone deacetylase
4
deacetylase srt2
4
srt2 enhances
4

Similar Publications

Phase Switch Driven by the Hidden Half-Ice, Half-Fire State in a Ferrimagnet.

Phys Rev Lett

December 2024

Brookhaven National Laboratory, Condensed Matter Physics and Materials Science Division, Upton, New York 11973, USA.

The notion of "half fire, half ice" was recently introduced to describe an exotic macroscopic ground-state degeneracy emerging in a ferrimagnet under the critical magnetic field, in which the "hot" spins are fully disordered on the sublattice with smaller magnetic moments and the "cold" spins are fully ordered on the sublattice with larger magnetic moments. Here, we further point out that this state has a twin named "half ice, half fire" in which the hot and cold spins switch positions. The new state is an excited state-thus hidden in the ground-state phase diagram-and is robust with respect to the interactions that destroy the half-fire, half-ice state.

View Article and Find Full Text PDF

Biochemical features and biotechnological potential of a proteolytic extract from a psychrophilic Antarctic bacterium.

Braz J Microbiol

January 2025

Laboratorio de Biocatalizadores y sus Aplicaciones, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, Uruguay.

Proteases are hydrolases that act on peptide bonds, releasing amino acids and/or oligopeptides, and are involved in essential functions in all organisms. They represent an important segment of the global enzyme market, with applications in the food, leather, detergent, and pharmaceutical industries. Depending on their industrial use, proteases should exhibit high activity under extreme conditions, such as low temperatures, e.

View Article and Find Full Text PDF

The concept of inert matrix fuel (IMF) has been proposed to utilize the energetic value of Pu and transmute minor actinides in nuclear reactors. In order to offset the initial reactivity of nuclear fuel, gadolinium (Gd) is employed as a burnable poison, owing to its high neutron absorption cross-section. To gain insights into the radiation stability and influence of grain boundaries on irradiation behaviour, 5 mol% Gd-doped ceria samples, sintered at varying temperatures, were subjected to irradiation using 400 Kr ions.

View Article and Find Full Text PDF

Unraveling the Effects of Reducing and Oxidizing Pretreatments and Humidity on the Surface Chemistry of the Ru/CeO Catalyst during Propane Oxidation.

J Phys Chem C Nanomater Interfaces

January 2025

Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 180 00, Czechia.

This work investigates the surface chemistry of the Ru/CeO catalyst under varying pretreatment conditions and during the oxidation of propane, focusing on both dry and humid environments. Our results show that the Ru/CeO catalyst calcined in O at 500 °C initiates propane oxidation at 200 °C, achieves high conversion rates above 400 °C, and demonstrates almost no change in activity in the presence of water vapor across the entire studied temperature range of 200-500 °C. Prereduction of the oxidized Ru/CeO catalyst in H significantly enhances its activity, though this enhancement diminishes at higher temperatures.

View Article and Find Full Text PDF

Cold agglutinin disease (CAD) is a rare and autoimmune hemolytic disorder caused by the presence of cold-reacting autoantibodies against red blood cells. An abdominal aortic aneurysm (AAA) is a potentially life-threatening condition. This report describes an 83-year-old man with AAA who was diagnosed with primary CAD 9 years before undergoing AAA surgery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!