Surface-enhanced Raman scattering (SERS) has emerged as a powerful surface analytical technique that amplifies Raman scattering signals of molecules adsorbed onto metal nanostructured surfaces. The droplet reaction method has recently been employed to fabricate large-scale microring patterns of silver (Ag) nanostructures on rigid substrates, which enables sensitive detection within the ring area. However, these rigid substrates present limitations for direct on-site detection of analyte residues on irregular sample surfaces. There is a need to develop soft and flexible SERS substrates that can intimately conform to arbitrary surfaces. In this study, we presented a SERS substrate using flexible and adhesive tape as the supporting material. This SERS tape was fabricated by repeatedly transferring presynthesized Ag nanostructures from a rigid substrate to the tape. For a model compound adenine, our SERS tape exhibited a good linear response from 5 × 10 M to 5 × 10 M with a low limit of detection (LOD) of 5 × 10 M and displayed a SERS enhancement factor (EF) of 3.2 × 10. The relative standard deviation (RSD) of SERS intensity achieved was as low as 1.93%, indicating its outstanding uniformity. The as-prepared SERS tape was used for in situ detection of pesticide residue on an apple surface and dye residue on human hair. Leveraging the large surface area of Ag nanostructure patterns from the droplet reaction, the developed SERS tape demonstrates excellent performance in terms of sensitivity and uniformity. The successful detection of analyte residues on arbitrary surfaces of apple and human hair highlights the potential of this flexible SERS tape for real-world applications across various industries for enhanced diagnostic accuracy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.3c03340 | DOI Listing |
ACS Omega
September 2024
Fitzpatrick Institute for Photonics, Duke University, Durham, North Carolina 27708, United States.
Wearable sweat sensors hold great potential for offering detailed health insights by monitoring various biomarkers present in sweat, such as glucose, lactate, uric acid, and urea, in real time. However, most previously reported sensors, primarily based on electrochemical technology, are limited to monitoring only a single analyte at a given time. This study introduces a simple, sensitive, wearable patch based on surface-enhanced Raman spectroscopy (SERS), integrated with highly plasmonically active sharp-branched gold nanostars (GNS) for the simultaneous detection of three sweat biomarkers: lactate, urea, and glucose.
View Article and Find Full Text PDFAnal Chem
June 2024
Centre for Applied Nanosciences (CAN), Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, India.
Droplet assay platforms have emerged as a significant methodology, providing distinct advantages such as sample compartmentalization, high throughput, and minimal analyte consumption. However, inherent complexities, especially in multiplexed detection, remain a challenge. We demonstrate a novel strategy to fabricate a plasmonic droplet assay platform (PDAP) for multiplexed analyte detection, enabling surface-enhanced Raman spectroscopy (SERS).
View Article and Find Full Text PDFMikrochim Acta
April 2024
Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.
A sandwich plasmonic coupled surface enhanced Raman spectroscopy (SERS) tape is proposed prepared by peeling the chemical printed silver nanocorals (AgNCs) from Cu sheet with adhesive tape, which can sample targets from food surface and sandwich them between substrates and Cu sheet for SERS detection. The solid-to-solid transformation method for fabricating SERS tapes can effectively avoid the weakening of tape stickiness during the preparation process. The sandwich plasmonic coupled structure of AgNC substrate, targets, and Cu sheet display excellent SERS activity (EF = 1.
View Article and Find Full Text PDFMikrochim Acta
March 2024
Centre for Ocean Research, Sathyabama Institute of Science and Technology, Chennai, 600 119, Tamil Nadu, India.
A highly flexible and cost-effective copper tape decorated with silver nanoparticles (Cu-TAg) has been developed for surface-enhanced Raman spectroscopy (SERS) sensing of multi-hazardous environmental pollutants. Highly ordered and spherical-shaped silver nanoarrays have been fabricated using a low-cost thermal evaporation method. The structural, morphological, and optical properties of Cu-TAg sensors have been studied and correlated to the corresponding SERS performances.
View Article and Find Full Text PDFAnalyst
March 2024
Fitzpatrick Institute for Photonics, Duke University, Durham, NC 27708, USA.
Recently, transparent and flexible surface-enhanced Raman scattering (SERS) substrates have received great interest for direct point-of-care detection of analytes on irregular nonplanar surfaces. In this study, we proposed a simple cost-effective strategy to develop a flexible SERS patch utilizing multibranched sharp spiked gold nanostars (GNS) decorated on a commercially available adhesive Scotch Tape for achieving ultra-high SERS sensitivity. The experimental SERS measurements were correlated with theoretical finite element modeling (FEM), which indicates that the GNS having a 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!