AI Article Synopsis

  • The study examines how the stiffness of the extracellular matrix influences chromatin organization and the efficiency of converting fibroblasts into neurons, finding optimal results at a stiffness of 20 kPa.
  • ATAC sequencing reveals that chromatin accessibility to neuronal genes peaks at this stiffness, while histone acetylation and histone acetyltransferase (HAT) activity are also maximized at 20 kPa, with inhibition of HAT activity negating the effects of matrix stiffness.
  • Changes in transporter proteins like G-actin and cofilin affect HAT's transport into the nucleus, showing a complex relationship between matrix stiffness and epigenetic regulation crucial for advances in cell engineering and regenerative medicine.

Article Abstract

We investigate how matrix stiffness regulates chromatin reorganization and cell reprogramming and find that matrix stiffness acts as a biphasic regulator of epigenetic state and fibroblast-to-neuron conversion efficiency, maximized at an intermediate stiffness of 20 kPa. ATAC sequencing analysis shows the same trend of chromatin accessibility to neuronal genes at these stiffness levels. Concurrently, we observe peak levels of histone acetylation and histone acetyltransferase (HAT) activity in the nucleus on 20 kPa matrices, and inhibiting HAT activity abolishes matrix stiffness effects. G-actin and cofilin, the cotransporters shuttling HAT into the nucleus, rises with decreasing matrix stiffness; however, reduced importin-9 on soft matrices limits nuclear transport. These two factors result in a biphasic regulation of HAT transport into nucleus, which is directly demonstrated on matrices with dynamically tunable stiffness. Our findings unravel a mechanism of the mechano-epigenetic regulation that is valuable for cell engineering in disease modeling and regenerative medicine applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10866547PMC
http://dx.doi.org/10.1126/sciadv.adk0639DOI Listing

Publication Analysis

Top Keywords

matrix stiffness
20
biphasic regulation
8
epigenetic state
8
stiffness
8
cell reprogramming
8
hat activity
8
matrix
5
regulation epigenetic
4
state matrix
4
stiffness cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!