A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting Risk of Colorectal Cancer After Adenoma Removal in a Large Community-Based Setting. | LitMetric

AI Article Synopsis

  • A study identified that existing colonoscopy surveillance guidelines for colorectal cancer (CRC) risk are primarily based on previous polyp characteristics, which could be improved by including additional risk factors.
  • The researchers developed and tested a comprehensive risk prediction model that incorporates patient age, diabetes status, and various polyp characteristics, comparing its effectiveness against a model that only considers polyp findings.
  • Results showed that the comprehensive model provided better predictive accuracy for postpolypectomy CRC diagnoses, outperforming the simpler polyp-only model in both development and validation cohorts.

Article Abstract

Introduction: Colonoscopy surveillance guidelines categorize individuals as high or low risk for future colorectal cancer (CRC) based primarily on their prior polyp characteristics, but this approach is imprecise, and consideration of other risk factors may improve postpolypectomy risk stratification.

Methods: Among patients who underwent a baseline colonoscopy with removal of a conventional adenoma in 2004-2016, we compared the performance for postpolypectomy CRC risk prediction (through 2020) of a comprehensive model featuring patient age, diabetes diagnosis, and baseline colonoscopy indication and prior polyp findings (i.e., adenoma with advanced histology, polyp size ≥10 mm, and sessile serrated adenoma or traditional serrated adenoma) with a polyp model featuring only polyp findings. Models were developed using Cox regression. Performance was assessed using area under the receiver operating characteristic curve (AUC) and calibration by the Hosmer-Lemeshow goodness-of-fit test.

Results: Among 95,001 patients randomly divided 70:30 into model development (n = 66,500) and internal validation cohorts (n = 28,501), 495 CRC were subsequently diagnosed; 354 in the development cohort and 141 in the validation cohort. Models demonstrated adequate calibration, and the comprehensive model demonstrated superior predictive performance to the polyp model in the development cohort (AUC 0.71, 95% confidence interval [CI] 0.68-0.74 vs AUC 0.61, 95% CI 0.58-0.64, respectively) and validation cohort (AUC 0.70, 95% CI 0.65-0.75 vs AUC 0.62, 95% CI 0.57-0.67, respectively).

Discussion: A comprehensive CRC risk prediction model featuring patient age, diabetes diagnosis, and baseline colonoscopy indication and polyp findings was more accurate at predicting postpolypectomy CRC diagnosis than a model based on polyp findings alone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11296925PMC
http://dx.doi.org/10.14309/ajg.0000000000002721DOI Listing

Publication Analysis

Top Keywords

polyp findings
16
baseline colonoscopy
12
model featuring
12
colorectal cancer
8
polyp
8
prior polyp
8
postpolypectomy crc
8
crc risk
8
risk prediction
8
comprehensive model
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: