Inhibitory Effect of Acetaminophen on Ocular Pigmentation and its Relationship with Thyroxine in Zebrafish Embryos.

Bull Environ Contam Toxicol

Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China.

Published: February 2024

Acetaminophen (N-acetyl-p-aminophenol; APAP) is one of the most widely used analgesics. To examine the toxicity of APAP, we used zebrafish embryos as model animals to detect the effect of APAP on the thyroid system of zebrafish embryos. The zebrafish embryos were exposed to APAP from 4 h post fertilization (4 hpf) until observation. The experimental results showed that APAP caused pericardial edema and decreased pigmentation in the zebrafish embryos or larvae. The APAP treatment caused a decrease in the expression of tpo and thrβ in the zebrafish at 36 and 72 hpf. The transcriptomic analysis found that APAP affected retinol metabolism, the metabolism of xenobiotics by cytochrome P450, and the tyrosine metabolism pathway. The harmful effect of APAP on zebrafish embryos might be due to its disrupting effect on the functional regulation of the thyroid hormone system.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00128-024-03867-0DOI Listing

Publication Analysis

Top Keywords

zebrafish embryos
24
apap
8
apap zebrafish
8
zebrafish
7
embryos
6
inhibitory acetaminophen
4
acetaminophen ocular
4
ocular pigmentation
4
pigmentation relationship
4
relationship thyroxine
4

Similar Publications

Objectives: Guo Min decoction (GMD) is a Chinese traditional medicine that can regulate allergy-related symptoms. Although GMD treatment was reported to treat allergy-associated symptoms by regulating the immune response, the rationale between GMD treatment and angiogenesis has not been reported yet. Our objective is to investigate the angiogenesis-modulating activity of GMD.

View Article and Find Full Text PDF

Background: Dermatophytes, the primary causative agents of superficial cutaneous fungal infections in humans, present a significant therapeutic challenge owing to the increasing prevalence of recurrent infections and the emergence of antifungal resistance. To address this critical gap, this study was designed to investigate the antifungal potential of 3-benzylideneindolin-2-one against dermatophytes and assess its in vivo toxicological profile using brine shrimp and zebrafish embryo models.

Methods: The antifungal activity of 3-benzylideneindolin-2-one was evaluated against 30 clinical isolates of dermatophyte species, including Trichophyton mentagrophytes, Trichophyton rubrum, Microsporum gypseum, Microsporum canis, and Epidermophyton floccosum, by determining the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) using the broth microdilution method.

View Article and Find Full Text PDF

Optimization of genome editing by CRISPR ribonucleoprotein for high efficiency of germline transmission of Sox9 in zebrafish.

N Biotechnol

January 2025

Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China. Electronic address:

Primordial germ cells (PGCs) are the first germline stem cells to emerge during early embryonic development and are essential for the propagation and survival of species. Genome editing creates mutagenesis possibilities in vivo, but the generation of precise mutations in PGCs is still challenging. Here, we report an optimized approach for highly efficient genome editing via introducing biallelic variations in early embryos in zebrafish.

View Article and Find Full Text PDF

With the US Environment Protection Agency reducing requests for (and funding of) mammalian studies alongside the proposed elimination of requests by 2035, there is an urgent need for fully validated New Approach Methods (NAMs) to fill the resultant gap for safety assessment of agrochemicals. One promising NAM for assessing the potential for human prenatal developmental toxicity potential is the Zebrafish Embryo Developmental Toxicity Assessment, a bioassay that has been used by the pharmaceutical industry for more than a decade in early-stage drug safety assessment. Despite its promise, little data has been generated to assess the validity of ZEDTA for assessing Developmental and Reproductive Toxicity of new agrochemical products.

View Article and Find Full Text PDF

The toxicity of tris (2-butoxyethyl) phosphate (TBOEP) has been extensively investigated because of its prevalence in the environment. Nevertheless, the risk factors associated with maternal transmission are poorly understood. In this study, sexually mature female zebrafish were treated with TBOEP (0, 20, 100, and 500 μg/L) for 30 days and were mated with unexposed males.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!