A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting COVID-19 new cases in California with Google Trends data and a machine learning approach. | LitMetric

Background: Google Trends data can be a valuable source of information for health-related issues such as predicting infectious disease trends.

Objectives: To evaluate the accuracy of predicting COVID-19 new cases in California using Google Trends data, we develop and use a GMDH-type neural network model and compare its performance with a LTSM model.

Methods: We predicted COVID-19 new cases using Google query data over three periods. Our first period covered March 1, 2020, to July 31, 2020, including the first peak of infection. We also estimated a model from October 1, 2020, to January 7, 2021, including the second wave of COVID-19 and avoiding possible biases from public interest in searching about the new pandemic. In addition, we extended our forecasting period from May 20, 2020, to January 31, 2021, to cover an extended period of time.

Results: Our findings show that Google relative search volume (RSV) can be used to accurately predict new COVID-19 cases.  We find that among our Google relative search volume terms, "Fever," "COVID Testing," "Signs of COVID," "COVID Treatment," and "Shortness of Breath" increase model predictive accuracy.

Conclusions: Our findings highlight the value of using data sources providing real-time data, e.g., Google Trends, to detect trends in COVID-19 cases, in order to supplement and extend existing epidemiological models.

Download full-text PDF

Source
http://dx.doi.org/10.1080/17538157.2024.2315246DOI Listing

Publication Analysis

Top Keywords

covid-19 cases
20
google trends
16
trends data
12
predicting covid-19
8
cases california
8
california google
8
2020 january
8
january 2021
8
google relative
8
relative search
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!