Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the context of the conceptual density functional theory (cDFT) and based on the computational efficiency of the constrained DFT (CDFT), we demonstrate that chemical reactivity can be governed by the difference between the local interacting chemical potentials of the reactants (referred as ), in agreement with Sanderson's equalization principle. In a proof-of-concept study, we investigated illustrative examples involving typical non-covalent donor-acceptor systems and reactive systems are provided. For the selected systems, our approach reveals significant mimicking between and the DFT-computed intermolecular interaction energy profiles. We further evaluate the influence of the Coulomb and exchange-correlation contributions in . These latter results suggest that numerous potential energy surfaces of clusters can be explored using a Sanderson-like model only based on classical interactions between molecular orbitals domains. To conclude, this study achieved a deeper understanding of the principles of cDFT and assessed, in a wider context, its efficiency in predicting the chemical reactivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jctc.3c01248 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!