False memories during testimony are an enormous challenge for criminal trials. Exposure to post-event misinformation can lead to inadvertent creation of false memories, known as the misinformation effect. We investigated anodal transcranial direct current stimulation (tDCS) on the left inferior parietal lobe (IPL) during recall testing to enhance accurate recall while addressing the misinformation effect. Participants ( = 60) watched a television series depicting a fictional terrorist attack, then received an audio recording with misinformation, consistent information, and control information. During cued recall testing, participants received anodal or sham tDCS. Results revealed a robust misinformation effect in both groups, with participants falsely recalling on average 26.6% of the misinformed items. Bayesian statistics indicated substantial evidence in favour of the null hypothesis that there was no difference between groups in the misinformation effect. Regarding correct recall however, the anodal group exhibited significantly improved recall for items from the original video. Together, these results demonstrate that anodal tDCS of the left IPL enhances correct recall of the episodes from the original event without affecting false recall of misinformation. The findings support the IPL's role in recollection and source attribution of episodic memories.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09658211.2024.2316174DOI Listing

Publication Analysis

Top Keywords

tdcs left
12
correct recall
12
anodal tdcs
8
left inferior
8
inferior parietal
8
recall
8
misinformation
8
recall misinformation
8
false memories
8
recall testing
8

Similar Publications

: Multiple sclerosis (MS) is the most prevalent incurable nontraumatic neurological disability in young individuals. It causes numerous symptoms, including tingling, fatigue, muscle spasms, cognitive deficits, and neuropsychiatric disorders. This disease significantly worsens quality of life (QoL), and this dimension of general functioning provides valuable information about the effectiveness of treatment and well-being.

View Article and Find Full Text PDF

Background: Resistant auditory verbal hallucination (AVH) remains a disabling symptom in schizophrenia. Transcranial direct current stimulation (tDCS) and its more targeted variant, high-definition tDCS (HD-tDCS), have shown promising results in reducing AVH. We aimed to determine the effects of adjunctive HD-tDCS on various dimensions of AVH in patients with schizophrenia.

View Article and Find Full Text PDF

Tourette syndrome (TS) is a neuropsychiatric disorder characterized by chronic motor and phonic tics, with a higher prevalence among boys. This condition can significantly impact patients' learning and daily life. Due to the limited efficacy and potential side effects of pharmacological treatments for TS, there is a critical need to develop novel, tailored therapeutic strategies.

View Article and Find Full Text PDF

This pilot randomized crossover study aimed to compare the effects of stimulating various transcranial direct current stimulation (tDCS) target sites to improve dual-task performance in patients with Parkinson's disease (PD). Nineteen patients with idiopathic PD completed four sessions of 2 mA anodal tDCS for 20 min at randomly assigned sites: the primary motor cortex (M1), left dorsolateral prefrontal cortex (DLPFC), ventromedial prefrontal cortex, and sham stimulation. Anodal M1 tDCS induced statistically significant improvements in single-task and cognitive dual-task timed up and go test.

View Article and Find Full Text PDF

Local effective connectivity changes after transcranial direct current stimulation in obsessive-compulsive disorder patients.

J Affect Disord

January 2025

School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany; School of Medicine and Health, TUM-NIC Neuroimaging Center, Technical University of Munich, Munich, Germany.

Aim: This study investigates the effects of transcranial direct current stimulation (tDCS) on brain network connectivity in individuals with obsessive-compulsive disorder (OCD).

Methods: In a randomized, double-blind, sham-controlled experimental design anodal tDCS (vs. sham) was applied in a total of 43 right-handed patients with OCD, targeting the right pre-supplementary motor area (pre-SMA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!