Computational study of electronic resonances is still a very challenging topic, with the phenomenon of dissociative electron attachment (DEA) being one of the multiple features worth investigating. Recently, we extended the charge stabilization method from energies to properties of conceptual density functional theory and applied this to metastable anionic states of ethene and chlorinated ethene derivatives to study the DEA mechanism present in these compounds. We now present an extension to spatial functions, namely, the electronic Fukui function and the electron localization function. The results of our analysis show that extrapolated spatial functions are relevant and useful for more precise localization of the unbound electron. Furthermore, we report for the first time the combination of the electron localization function with Berlin's binding function for these challenging electronic states. This promising methodology allows for accurate predictions of when and where DEA will happen in the molecules studied and provides more insight into the process.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0180011DOI Listing

Publication Analysis

Top Keywords

electron localization
12
berlin's binding
8
dissociative electron
8
electron attachment
8
spatial functions
8
localization function
8
electron
6
combining extrapolated
4
extrapolated electron
4
localization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!