Background: Permeation-enhancing compounding bases are aimed to facilitate the penetration of the active pharmaceutical ingredients (APIs) across the skin barrier.
Objectives: The purpose of this study was to evaluate the percutaneous absorption of radiolabeled human insulin ( C-isototpe) when incorporated in a proprietary phospholipid base designed to deliver APIs with high molecular weights (HMW). The aim was not to claim the transdermal delivery of insulin with potential therapeutic applications in diabetes but, instead, to evaluate the ability of the compounding phospholipid base to deliver HMW drugs.
Methods: The percutaneous absorption of C-insulin was determined using human torso skin and the Franz skin finite dose model. Two topical test formulations were prepared for in vitro evaluation: insulin 1% in phospholipid base (standard) and insulin 1% in phospholipid base HMW. The rate of percutaneous absorption (mean flux) and the distribution of C-insulin through the skin were evaluated for both topical test formulations. A two-way ANOVA was used to determine statistical differences.
Results: The C-insulin was distributed into the stratum corneum, epidermis and dermis. Mean flux values showed a rapid penetration upon application and the maximum flux was achieved at 30 min, followed by a slow decline. Subsequently, a slower decline was observed for the topical test formulation including the phospholipid base HMW.
Conclusion: The phospholipid base HMW facilitates the percutaneous absorption of HMW drugs across human cadaver skin and, therefore, it may potentially be a useful option for compounding pharmacists and practitioners when considering the skin for the percutaneous delivery of large drugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10865068 | PMC |
http://dx.doi.org/10.1111/srt.13610 | DOI Listing |
Int J Syst Evol Microbiol
January 2025
Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China.
Int J Syst Evol Microbiol
January 2025
China General Microbiological Culture Collection Center (CGMCC), Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.
Int J Syst Evol Microbiol
January 2025
Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China.
A bacterial strain, designated as A6, was isolated from the rhizosphere soil of a healthy muskmelon in Wenchang, Hainan Province, China. The cells of strain A6 were Gram-negative, aerobic, short rod and motile with a single polar flagellum. Strain A6 could tolerate up to 55.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Universit Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France.
Ten novel Gram-negative, aerobic, non-sporulating, yellow-pigmented rod-shaped bacterial strains motile by gliding were isolated from marine organisms/environments in French Polynesia. Three of them designated as 190524A05c, 190524A02b and 190130A14a were retrieved from orbicular batfish () mucus. Online database comparisons using 16S rRNA amplicons resulted in over 95% similarity to the genus .
View Article and Find Full Text PDFCurr Microbiol
January 2025
Jiangsu Longhuan Environmental Science Co. LTD, Changzhou, 213164, China.
A bacterial strain P1, capable of degrading diesel and converting thiosulfate to sulfate was isolated from an oil-contaminated soil sample. The cells were Gram-stain-negative, slightly curved rods and motile with a single polar flagellum. Growth of the strain was observed at 4-45 °C (optimum at 28 °C), at pH 4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!