Observational studies have reported high comorbidity between obesity and severe COVID-19. The aim of this study is to explore whether genetic factors are involved in the co-occurrence of the two traits. Based on the available genome-wide association studies (GWAS) summary statistics, we explored the genetic correlation and performed cross-trait meta-analysis (CPASSOC) and colocalization analysis (COLOC) to detect pleiotropic single nucleotide polymorphisms (SNPs). At the genetic level, we obtained genes detected by Functional mapping and annotation (FUMA) and the Multi-marker Analysis of GenoMic Annotation (MAGMA). Potential functional genes were further investigated by summary-data-based Mendelian randomization (SMR). Finally, the casualty was identiied using the latent causal variable model (LCV). A significant positive genetic correlation was revealed between obesity and COVID-19. We found 331 shared genetic SNPs by CPASSOC and 13 shared risk loci by COLOC. At the genetic level, We obtained 3546 pleiotropic genes, among which 107 genes were found to be significantly expressed by SMR. Lastly, we observed these genes were mainly enriched in immune pathways and signaling transduction. These indings could provide new insights into the etiology of comorbidity and have implications for future therapeutic trial.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10862482 | PMC |
http://dx.doi.org/10.3389/fendo.2024.1325939 | DOI Listing |
Naxos disease is a rare autosomal recessive condition combining arrhythmogenic right ventricular cardiomyopathy, woolly hair, and palmoplantar keratoderma. The first identified causative variant was in the gene encoding the desmosomal protein plakoglobin. Naxos disease exhibits fibro-fatty myocardial replacement with immunohistological abnormalities in cardiac protein and signaling pathways, highlighting the role of inflammation and potential anti-inflammatory treatments.
View Article and Find Full Text PDFMicrolife
January 2025
Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany.
Oil reservoirs are society's primary source of hydrocarbons. While microbial communities in industrially exploited oil reservoirs have been investigated in the past, pristine microbial communities in untapped oil reservoirs are little explored, as are distribution patterns of respective genetic signatures. Here, we show that a pristine oil sample contains a complex community consisting of bacteria and fungi for the degradation of hydrocarbons.
View Article and Find Full Text PDFProc Biol Sci
January 2025
UMR 1349, IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu and 35000 Rennes, France.
Sexual conflict can arise because males and females, while sharing most of their genome, can have different phenotypic optima. Sexually dimorphic gene expression may help reduce conflict, but the expression of many genes may remain sub-optimal owing to unresolved tensions between the sexes. Asexual lineages lack such conflict, making them relevant models for understanding the extent to which sexual conflict influences gene expression.
View Article and Find Full Text PDFGenet Epidemiol
March 2025
Department of Social and Preventive Medicine, Laval University, Quebec City, Quebec, Canada.
A large proportion of genetic variations involved in complex diseases are rare and located within noncoding regions, making the interpretation of underlying biological mechanisms a daunting task. Although technical and methodological progress has been made to annotate the genome, current disease-rare-variant association tests incorporating such annotations suffer from two major limitations. First, they are generally restricted to case-control designs of unrelated individuals, which often require tens or hundreds of thousands of individuals to achieve sufficient power.
View Article and Find Full Text PDFHGG Adv
January 2025
Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA; University Program in Genetics and Genomics, Duke University, Durham, NC, USA; Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, USA. Electronic address:
Most genetic variants identified through genome-wide association studies (GWAS) are suspected to be regulatory in nature, but only a small fraction colocalize with expression quantitative trait loci (eQTLs, variants associated with expression of a gene). Therefore, it is hypothesized but largely untested that integration of disease GWAS with context-specific eQTLs will reveal the underlying genes driving disease associations. We used colocalization and transcriptomic analyses to identify shared genetic variants and likely causal genes associated with critically ill COVID-19 and idiopathic pulmonary fibrosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!