An synthesis approach is used to directly grow a microsphere of melamine-glutaraldehyde (MAGA) polymer over three-dimensional (3D) nickel foam (NF). The materials are used to produce nitrogen-doped carbon (NC) with and without NF. These precursors undergo carbonization at various temperatures, namely 400 °C, 500 °C, and 700 °C. The electrochemical properties of the materials would be significantly improved by directly growing MAGA polymer on the surface of NF. The electrochemical performance of NC/NF-400 was excellent, with a capacitance of 297 F g achieved at a current density of 1 A g. The growing approach does not necessitate the use of additional chemical agents, such as binders or conductive compounds when preparing the electrode. In addition, the material exhibits only 10% reduction in capacitance after undergoing 5000 cycles, indicating excellent cycling performance. The outstanding electrochemical performance achieved by using the method of MAGA microsphere polymer on NF may be attributed to the rapid transit of ions to the electrode surfaces, facilitating effortless redox reactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10862101PMC
http://dx.doi.org/10.1039/d3ra08489bDOI Listing

Publication Analysis

Top Keywords

nickel foam
8
maga polymer
8
electrochemical performance
8
polymerization melamine-based
4
melamine-based microsphere
4
microsphere nickel
4
foam supercapacitors
4
supercapacitors synthesis
4
synthesis approach
4
approach directly
4

Similar Publications

The direct electrochemical carboxylation of aryl, benzyl and alkyl halides by CO is described using a magnesium anode and a nickel foam cathode in an undivided cell. The process employs a sacrificial anode and does not require the additional use of a transition metal catalyst or demanding conditions, as the reactions are carried out under galvanostatic mode, at -10 °C and with commercial DMF. Under these operationally simple conditions, an important range of carboxylic acids are affordable.

View Article and Find Full Text PDF

The upsurging of cost-effective electrocatalysts through the operando electro-oxidation approaches holds great promise for the scalable production of green energy in the pursuit of energy sustainability. This work introduces an operando electro-oxidation reconstitution strategy in producing a smart electrocatalyst, cobalt "oxyhydroxide" derived from a newly designed 2D cobalt(II) metal-organic framework (-) directly grown on nickel foam (NF), . The electrocatalyst, , exhibits an outstanding overpotential of 76 mV for the hydrogen evolution reaction and 336 mV for the oxygen evolution reaction to achieve a current density of 10 mA/cm with remarkable Faradaic efficiencies of 97.

View Article and Find Full Text PDF

The sluggish kinetics of the hydrogen evolution reaction (HER) result in a high overpotential in alkaline solutions. A high-curvature metal oxide heterostructure can effectively boost the electrocatalytic HER by leveraging the tip-enhanced local electric field effect. Herein, NiP/NiMoO nanocones were synthesised on a nickel foam (NF) substrate by etching a metal-organic framework template.

View Article and Find Full Text PDF

A safe and robust in-situ polymerized cementitious electrolyte coupled with NiCoS@CuCoS electrode for superior load-bearing integrated electrochemical capacitor.

J Colloid Interface Sci

January 2025

Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai 201804 PR China. Electronic address:

Load bearing/energy storage integrated devices (LEIDs) featuring cementitious electrolytes have become ideal for large-scale energy storage. Nevertheless, the progression of LEIDs is still in its nascent phase and considerable endeavors concerning cementitious electrolytes and electrode materials are necessary to further boost the charge storage ability. Here, we propose a facile synchronous reaction method for preparing sodium acrylate (SA)-based in-situ polymerized cementitious electrolyte.

View Article and Find Full Text PDF

Electrocatalytic Biomass Oxidation via Acid-Induced In Situ Surface Reconstruction of Multivalent State Coexistence in Metal Foams.

Adv Mater

January 2025

Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, 230026, China.

Electrocatalytic biomass conversion offers a sustainable route for producing organic chemicals, with electrode design being critical to determining reaction rate and selectivity. Herein, a prediction-synthesis-validation approach is developed to obtain electrodes for precise biomass conversion, where the coexistence of multiple metal valence states leads to excellent electrocatalytic performance due to the activated redox cycle. This promising integrated foam electrode is developed via acid-induced surface reconstruction to in situ generate highly active metal (oxy)hydroxide or oxide (MOH or MO) species on inert foam electrodes, facilitating the electrooxidation of 5-hydroxymethylfurfural (5-HMF) to 2,5-furandicarboxylic acid (FDCA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!