Mutations are the source of novel genetic diversity but can also lead to disease and maladaptation. The conventional view is that mutations occur randomly with respect to their environment-specific fitness consequences. However, intragenomic mutation rates can vary dramatically due to transcription coupled repair and based on local epigenomic modifications, which are non-uniformly distributed across genomes. One sequence feature associated with decreased mutation is higher expression level, which can vary depending on environmental cues. To understand whether the association between expression level and mutation rate creates a systematic relationship with environment-specific fitness effects, we perturbed expression through a heat treatment in . We quantified gene expression to identify differentially expressed genes, which we then targeted for mutation detection using Duplex Sequencing. This approach provided a highly accurate measurement of the frequency of rare somatic mutations in vegetative plant tissues, which has been a recent source of uncertainty in plant mutation research. We included mutant lines lacking mismatch repair (MMR) and base excision repair (BER) capabilities to understand how repair mechanisms may drive biased mutation accumulation. We found wild type (WT) and BER mutant mutation frequencies to be very low (mean variant frequency 1.8×10 and 2.6×10, respectively), while MMR mutant frequencies were significantly elevated (1.13×10). These results show that somatic variant frequencies are extremely low in WT plants, indicating that larger datasets will be needed to address the fundamental evolutionary question as to whether environmental change leads to gene-specific changes in mutation rate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10862904PMC
http://dx.doi.org/10.1101/2024.01.31.578196DOI Listing

Publication Analysis

Top Keywords

somatic mutations
8
duplex sequencing
8
environment-specific fitness
8
mutation
8
expression level
8
mutation rate
8
investigating low
4
low frequency
4
frequency somatic
4
mutations
4

Similar Publications

Hepatocellular carcinoma (HCC) is an aggressive disease with poor prognosis, necessitating preclinical models for evaluating novel therapies. Large animal models are particularly valuable for assessing locoregional therapies, which are widely employed across HCC stages. This study aimed to develop a large animal HCC model with tailored tumor mutations.

View Article and Find Full Text PDF

Investigating the origins of the mutational signatures in cancer.

Nucleic Acids Res

January 2025

Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA.

Most of the risk factors associated with chronic and complex diseases, such as cancer, stem from exogenous and endogenous exposures experienced throughout an individual's life, collectively known as the exposome. These exposures can modify DNA, which can subsequently lead to the somatic mutations found in all normal and tumor tissues. Understanding the precise origins of specific somatic mutations has been challenging due to multitude of DNA adducts (i.

View Article and Find Full Text PDF

Genetic diversity within a tree and alternative indexes for different evolutionary effects.

Quant Plant Biol

December 2024

Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.

Trees, living for centuries, accumulate somatic mutations in their growing trunks and branches, causing genetic divergence within a single tree. Stem cell lineages in a shoot apical meristem accumulate mutations independently and diverge from each other. In plants, somatic mutations can alter the genetic composition of reproductive organs and gametes, impacting future generations.

View Article and Find Full Text PDF

Congenital melanocytic nevus (CMN) syndrome is a rare, non-familial neural ectodermal dysplasia characterized by CMN combined with extracutaneous abnormalities, predominantly involving the central nervous system (CNS). The pathogenesis of CMN syndrome is thought to result from early post-zygotic somatic mutations. CNS melanosis frequently affects the anterior temporal lobes, brainstem, cerebellum, and cerebral cortex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!