Unlabelled: Despite their widespread use, we have limited knowledge of the mechanisms by which sedatives mediate their effects on brain-wide networks. This is, in part, due to the technical challenge of observing activity across large populations of neurons in normal and sedated brains. In this study, we examined the effects of the sedative dexmedetomidine, and its antagonist atipamezole, on spontaneous brain dynamics and auditory processing in zebrafish larvae. Our brain-wide, cellular-resolution calcium imaging reveals, for the first time, the brain regions involved in these network-scale dynamics and the individual neurons that are affected within those regions. Further analysis reveals a variety of dynamic changes in the brain at baseline, including marked reductions in spontaneous activity, correlation, and variance. The reductions in activity and variance represent a "quieter" brain state during sedation, an effect that causes highly correlated evoked activity in the auditory system to stand out more than it does in un-sedated brains. We also observe a reduction in auditory response latencies across the brain during sedation, suggesting that the removal of spontaneous activity leaves the core auditory pathway free of impingement from other non-auditory information. Finally, we describe a less dynamic brain-wide network during sedation, with a higher energy barrier and a lower probability of brain state transitions during sedation. In total, our brain-wide, cellular-resolution analysis shows that sedation leads to quieter, more stable, and less dynamic brain, and that against this background, responses across the auditory processing pathway become sharper and more prominent.
Significance Statement: Animals' brain states constantly fluctuate in response to their environment and context, leading to changes in perception and behavioral choices. Alterations in perception, sensorimotor gating, and behavioral selection are hallmarks of numerous neuropsychiatric disorders, but the circuit- and network-level underpinnings of these alterations are poorly understood.Pharmacological sedation alters perception and responsiveness and provides a controlled and repeatable manipulation for studying brain states and their underlying circuitry. Here, we show that sedation of larval zebrafish with dexmedetomidine reduces brain-wide spontaneous activity and locomotion but leaves portions of brain-wide auditory processing and behavior intact. We describe and computationally model changes at the levels of individual neurons, local circuits, and brain-wide networks that lead to altered brain states and sensory processing during sedation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10862762 | PMC |
http://dx.doi.org/10.1101/2024.01.29.577877 | DOI Listing |
J Autism Dev Disord
December 2024
School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China.
Autism spectrum disorder (ASD) has been reported to exhibit altered local functional consistency. However, previous studies mainly focused on male samples and explored the temporal consistency in the ASD brain ignoring the spatial consistency. In this study, FOur-dimensional Consistency of local neural Activities (FOCA) analysis was used to investigate the sex differences of local spatiotemporal consistency of spontaneous brain activity in ASD.
View Article and Find Full Text PDFClin Transl Med
January 2025
Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Background: Sporadic aortic aneurysm and dissection (AAD) is a critical condition characterised by the progressive loss of vascular smooth muscle cells (VSMCs) and the breakdown of the extracellular matrix. However, the molecular mechanisms responsible for the phenotypic switch and loss of VSMCs in AAD are not fully understood.
Methods And Results: In this study, we employed a discovery-driven, unbiased approach.
Commun Biol
December 2024
Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
Dexmedetomidine (DexM), a highly selective α-adrenoceptor agonist, significantly reduces postoperative adverse effects, including sleep and circadian rhythm disruptions. Vasoactive intestinal peptide neurons in the suprachiasmatic nucleus (SCN) regulate the synchronization of circadian rhythms with the external environment in mammals. We investigate the effects of DexM on sleep and circadian rhythms, as well as the underlying mechanisms.
View Article and Find Full Text PDFSci Rep
December 2024
Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, 34110, Qatar.
This study aims to modify raw zeolite with metal oxide nanocomposites to remove nickel (Ni) ions from synthetic wastewater. Novel zeolite-doped magnesium oxide (MgO), iron oxide (FeO), and zinc oxide (ZnO) nanocomposites were synthesized by hydrothermal-calcination methods. The novel zeolite-doped metal oxide nanocomposites were used as adsorbents to remove Ni (II) ions from synthetic wastewater.
View Article and Find Full Text PDFSynapse
January 2025
Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
Mammalian sterile20-like kinase 1 (MST1), a serine/threonine kinase frequently expressed, has emerged as pivotal modulator of multiple physiological and pathological conditions such as cellular growth, programmed cell death, oxidative stress, neurodegeneration, inflammation, and synaptic plasticity in the central nervous system. Various neurological diseases are associated with the activation of MST1. Epilepsy is a severe neurological disorder characterized by abrupt abnormal electrical activity in the brain and recurring spontaneous seizures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!