Background Resting-state electroencephalogram (rsEEG) is usually obtained to assess seizures in comatose patients with traumatic brain injury (TBI) patients. We aim to investigate rsEEG measures and their prediction of early recovery of consciousness in comatose TBI patients. Methods This is a retrospective study of comatose TBI patients who were admitted to a level-1 trauma center (10/2013-1/2022). Demographics, basic clinical data, imaging characteristics, and EEG data were collected. We calculated using 10-minute rsEEGs: power spectral density (PSD), permutation entropy (PE - complexity measure), weighted symbolic-mutual-information (wSMI - global information sharing measure), Kolmogorov complexity (Kolcom - complexity measure), and heart-evoked potentials (HEP - the averaged EEG signal relative to the corresponding QRS complex on electrocardiogram). We evaluated the prediction of consciousness recovery before hospital discharge using clinical, imaging, rsEEG data via Support Vector Machine with a linear kernel (SVM). Results We studied 113 (out of 134, 84%) patients with rsEEGs. A total of 73 (65%) patients recovered consciousness before discharge. Patients who recovered consciousness were younger (40 vs. 50, p .01). Patients who recovered consciousness had higher Kolcom (U = 1688, p = 0.01,), increased beta power (U = 1652 p = 0.003), with higher variability across channels ( U = 1534, p = 0.034), and epochs (U = 1711, p = 0.004), lower delta power (U = 981, p = 0.04) and showed higher connectivity across time and channels as measured by wSMI in the theta band (U = 1636, p = .026, U = 1639, p = 0.024) than those who didn't recover. The ROC-AUC improved from 0.66 (using age, motor response, pupils' reactivity, and CT Marshall classification) to 0.69 (p < 0.001) when adding rsEEG measures. Conclusion We describe the rsEEG EEG signature in recovery of consciousness prior to discharge in comatose TBI patients. Resting-state EEG measures improved prediction beyond the clinical and imaging data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10862951 | PMC |
http://dx.doi.org/10.21203/rs.3.rs-3895330/v1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!