Hydrogen Peroxide (HO) is a central oxidant in redox biology due to its pleiotropic role in physiology and pathology. However, real-time monitoring of HO in living cells and tissues remains a challenge. We address this gap with the development of an optogenetic hydRogen perOxide Sensor (oROS), leveraging the bacterial peroxide binding domain OxyR. Previously engineered OxyR-based fluorescent peroxide sensors lack the necessary sensitivity or response speed for effective real-time monitoring. By structurally redesigning the fusion of Escherichia coli (E. coli) ecOxyR with a circularly permutated green fluorescent protein (cpGFP), we created a novel, green-fluorescent peroxide sensor oROS-G. oROS-G exhibits high sensitivity and fast on-and-off kinetics, ideal for monitoring intracellular HO dynamics. We successfully tracked real-time transient and steady-state HO levels in diverse biological systems, including human stem cell-derived neurons and cardiomyocytes, primary neurons and astrocytes, and mouse neurons and astrocytes in ex vivo brain slices. These applications demonstrate oROS's capabilities to monitor HO as a secondary response to pharmacologically induced oxidative stress, G-protein coupled receptor (GPCR)-induced cell signaling, and when adapting to varying metabolic stress. We showcased the increased oxidative stress in astrocytes via Aβ-putriscine-MAOB axis, highlighting the sensor's relevance in validating neurodegenerative disease models. oROS is a versatile tool, offering a window into the dynamic landscape of HO signaling. This advancement paves the way for a deeper understanding of redox physiology, with significant implications for diseases associated with oxidative stress, such as cancer, neurodegenerative disorders, and cardiovascular diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10862829 | PMC |
http://dx.doi.org/10.1101/2024.01.31.578117 | DOI Listing |
Discov Oncol
January 2025
Spinal Surgery Department, the Fourth People's Hospital of Jinan, No.50 Normal Road, Tianqiao District, Jinan, 250031, Shandong, China.
Background: It is known that genomic instability contributes to cancer development. Mitotically associated long non-coding RNA (MANCR) has been reported to promote genomic stability, suggesting its involvement in cancers. Therefore, this study was conducted to investigate the role of MANCR in non-small cell lung cancer (NSCLC).
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Quantum-Si, Guilford, CT, USA.
Single-molecule fluorescence resonance energy transfer (smFRET) is a powerful technique for studying the structural dynamics of protein molecules or detecting interactions between protein molecules in real time. Due to the high sensitivity in spatial and temporal resolution, smFRET can decipher sub-populations within heterogeneous native state conformations, which are generally lost in traditional measurements due to ensemble averaging. In addition, the single-molecule reconstitution allows protein molecules to be observed for an extensive period of time and can recapitulate the geometry of the cellular environment to retain biological function.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory for Radiophysical and Optical Methods of Environmental Research, National Research Tomsk State University, Tomsk, Russia, 634050.
Monitoring the parameters and behavior of plankton makes it possible to assess the state of the aquatic ecosystem and detect the beginning of an environmental disaster at an early stage. In this respect, the most informative method for the in situ plankton study is underwater digital holography. This method allows obtaining information on the size, shape, and location of plankton individuals, as well as performing their classification and biotesting according to their behavioral responses using a submersible holographic camera non-invasively, in real time, and in the automatic mode.
View Article and Find Full Text PDFNephrol Dial Transplant
January 2025
Department of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
Integr Environ Assess Manag
January 2025
División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/IT de Culiacán, Culiacán, Sinaloa, México.
Eutrophication is one of the most relevant concerns due to the risk to water supply and food security. Nitrogen and phosphorus chemical species concentrations determined the risk and magnitude of eutrophication. These analyses are even more relevant in basins with intensive agriculture due to agrochemical discharges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!