A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multimodal robotic music performance art based on GRU-GoogLeNet model fusing audiovisual perception. | LitMetric

Multimodal robotic music performance art based on GRU-GoogLeNet model fusing audiovisual perception.

Front Neurorobot

School of Preschool and Art Education, Xinyang Vocational and Technical College, Xinyang, China.

Published: January 2024

The field of multimodal robotic musical performing arts has garnered significant interest due to its innovative potential. Conventional robots face limitations in understanding emotions and artistic expression in musical performances. Therefore, this paper explores the application of multimodal robots that integrate visual and auditory perception to enhance the quality and artistic expression in music performance. Our approach involves integrating GRU (Gated Recurrent Unit) and GoogLeNet models for sentiment analysis. The GRU model processes audio data and captures the temporal dynamics of musical elements, including long-term dependencies, to extract emotional information. The GoogLeNet model excels in image processing, extracting complex visual details and aesthetic features. This synergy deepens the understanding of musical and visual elements, aiming to produce more emotionally resonant and interactive robot performances. Experimental results demonstrate the effectiveness of our approach, showing significant improvements in music performance by multimodal robots. These robots, equipped with our method, deliver high-quality, artistic performances that effectively evoke emotional engagement from the audience. Multimodal robots that merge audio-visual perception in music performance enrich the art form and offer diverse human-machine interactions. This research demonstrates the potential of multimodal robots in music performance, promoting the integration of technology and art. It opens new realms in performing arts and human-robot interactions, offering a unique and innovative experience. Our findings provide valuable insights for the development of multimodal robots in the performing arts sector.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10861776PMC
http://dx.doi.org/10.3389/fnbot.2023.1324831DOI Listing

Publication Analysis

Top Keywords

music performance
20
multimodal robots
20
performing arts
12
multimodal robotic
8
artistic expression
8
multimodal
7
robots
7
music
5
performance
5
robotic music
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!