Keloid is the maximum expression of pathological fibroproliferative skin wound healing, whose pathophysiology is not yet fully understood. Its occurrence in the perineum and genitalia is uncommon. A systematic review was carried out regarding the occurrence and treatment of keloids on the penis. An illustrative case was also reported. The review used the PRISMA checklist and was registered in PROSPERO. The entire literature period up to April 2023 was searched in the EMBASE/Elsevier, Cochrane, Scopus, Medline, BVS, SciELO, and Lilacs databases. The inclusion criteria embraced primary studies, clinical trials, prospective or retrospective cohorts, case series, case-control studies and case reports. Three hundred and sixty-one studies were found and 12 of them were included, consisting of 9 case reports and 3 case series. The most common triggering factor for keloid formation was circumcision, in 11 of the cases, of which more than half occurred in prepubescent children. Several therapies, associated or isolated, were used to treat the cases. Only one of the reported patients had scar recurrence after surgical treatment. Studies with better scientific evidence are needed to understand the involvement of keloids in male genitalia. However, keloid formation in this topography is rare, making it difficult to carry out more elaborate studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/wrr.13157 | DOI Listing |
J Dermatolog Treat
December 2025
Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
Keloid tissue represents an abnormal proliferation of fibroblasts, typically resulting from skin injury. These lesions can lead to significant physiological dysfunction and aesthetic concerns, particularly when located on the face. Traditional treatments, such as intralesional injections, laser therapy, and surgical excision, have shown limited efficacy and are associated with high recurrence rates.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China.
The stress response following burns may be a crucial factor in keloid formation, yet the underlying pathological mechanisms remain to be elucidated. This study initially investigated how heat shock factor 1 (HSF1) and heat shock proteins (HSPs) within the heat shock pathway influence keloid fibrosis, providing insights into the role of the heat shock response in keloid development. This study aims to further elucidate the role of the heat shock pathway in keloid fibrosis and investigate the specific function of HSF1 within this pathway.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
Some studies have confirmed that pathogens can cause infection through bacterial cultures on the surface of infectious keloids. However, further exploration of the comparison between infectious and non-infectious keloids and the bacterial flora of infectious foci is lacking. To investigate the differential flora of purulent secretions on the surface of infectious keloids compared to non-infectious keloids and to determine the microbial composition within the infectious foci.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Dermatology Department, Yanbian University Hospital, 1327 Juzi St, Yanji, 133002, Jilin, China.
Pathological scars are classified into hypertrophic scars and keloids, and currently have poor treatment outcomes and high recurrence rates. Bleomycin has received widespread attention in scar treatment in recent years, but there is currently no exploration on its real-world data. PubMed, Embase, and Cochrane databases were searched, and eight retrospective studies on the use of bleomycin for treatment were included, covering a total of 562 patients with keloids and hypertrophic scars.
View Article and Find Full Text PDFExp Cell Res
January 2025
Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui, 230032, China. Electronic address:
Keloids are disfiguring proliferative scars, and their pathological mechanisms are still unclear. We have previously established that FoxC1 plays a significant role in rheumatoid arthritis and osteoarthritis, but its molecular mechanisms in pathological scar formation remain elusive. In this study, we analyzed keloid tissue characteristics using HE staining and immunohistochemistry, revealing abnormal expression of FoxC1 and Notch3 in keloids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!