A comprehensive review of machine learning and its application to dairy products.

Crit Rev Food Sci Nutr

Dairy Products Technology Center, California Polytechnic State University, San Luis Obispo, California, USA.

Published: February 2024

Machine learning (ML) technology is a powerful tool in food science and engineering offering numerous advantages, from recognizing patterns and predicting outcomes to customizing and adjusting to individual needs. Its further development can enable researchers and industries to significantly enhance the efficiency of dairy processing while providing valuable insights into the field. This paper presents an overview of the role of machine learning in the dairy industry and its potential to improve the efficiency of dairy processing. We performed a systematic search for articles published between January 2003 and January 2023 related to machine learning in dairy products and highlighted the algorithms used. 48 studies are discussed to assist researchers in identifying the best methods that could be applied in their field and providing relevant ideas for future research directions. Moreover, a step-by-step guide to the machine learning process, including a classification of different machine learning algorithms, is provided. This review focuses on state-of-the-art machine learning applications in milk products and their transformation into other dairy products, but it also presents future perspectives and conclusions. The study serves as a valuable guide for individuals in the dairy industry interested in learning about or getting involved with ML.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10408398.2024.2312537DOI Listing

Publication Analysis

Top Keywords

machine learning
28
dairy products
12
learning
8
efficiency dairy
8
dairy processing
8
learning dairy
8
dairy industry
8
machine
7
dairy
7
comprehensive review
4

Similar Publications

A prediction model for electrical strength of gaseous medium based on molecular reactivity descriptors and machine learning method.

J Mol Model

January 2025

Hubei Key Laboratory·for High-Efficiency-Utilization of Solar Energy and Operation, Control of Energy-Storage System, Hubei-University of Technology, Wuhan, 430068, China.

Context: Ionization and adsorption in gas discharge are similar to electrophilic and nucleophilic reactions. The molecular descriptors characterizing reactions such as electrostatic potential descriptors are useful in predicting the electrical strength of environmentally friendly gases. In this study, descriptors of 73 molecules are employed for correlation analysis with electrical strength.

View Article and Find Full Text PDF

Predicting fall parameters from infant skull fractures using machine learning.

Biomech Model Mechanobiol

January 2025

Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.

When infants are admitted to the hospital with skull fractures, providers must distinguish between cases of accidental and abusive head trauma. Limited information about the incident is available in such cases, and witness statements are not always reliable. In this study, we introduce a novel, data-driven approach to predict fall parameters that lead to skull fractures in infants in order to aid in determinations of abusive head trauma.

View Article and Find Full Text PDF

Role of immune cell homeostasis in research and treatment response in hepatocellular carcinoma.

Clin Exp Med

January 2025

Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.

View Article and Find Full Text PDF

The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.

View Article and Find Full Text PDF

Risk-taking is a concerning yet prevalent issue during adolescence and can be life-threatening. Examining its etiological sources and evolving pathways helps inform strategies to mitigate adolescents' risk-taking behavior. Studies have found that unfavorable environmental factors, such as adverse childhood experiences (ACEs), are associated with momentary levels of risk-taking in adolescents, but little is known about whether ACEs shape the developmental trajectory of risk-taking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!