Accurate estimation of particle size distribution across a large area is crucial for proper soil management and conservation, ensuring compatibility with capabilities and enabling better selection and adaptation of precision agricultural techniques. The study investigated the performance of tree-based models, ranging from simpler options like CART to sophisticated ones like XGBoost, in predicting soil texture over a wide geographic region. Models were constructed using remotely sensed plant and soil indexes as covariates. Variable selection employed the Boruta approach. Training and testing data for machine learning models consisted of particle size distribution results from 622 surface soil samples collected in southeastern Turkey. The XGBoost model emerged as the most accurate predictor, with an R value of 0.74. Its superiority was further underlined by a 21.36% relative improvement in XGBoost RMSE compared to RF and 44.5% compared to CART. Similarly, the R values for XGBoost and XGBoost models reached 0.71 and 0.75 in predicting sand and silt content, respectively. Among the considered covariates, the normalized ratio vegetation index and slope angle had the highest impact on clay content (21%), followed by topographic position index and simple ratio clay index (20%), while terrain ruggedness index had the least impact (18%). These results highlight the effectiveness of Boruta approach in selecting an adequate number of variables for digital mapping, suggesting its potential as a viable option in this field. Furthermore, the findings of this study suggest that remote sensing data can effectively contribute to digital soil mapping, with tree-based model development leading to improved prediction performance.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-024-12431-6DOI Listing

Publication Analysis

Top Keywords

particle size
8
size distribution
8
boruta approach
8
soil
6
xgboost
5
tree-based algorithms
4
algorithms spatial
4
spatial modeling
4
modeling soil
4
soil particle
4

Similar Publications

Mesoporous Silica with Dual Stimuli-Microenvironment Responsiveness via the Pectin-Gated Strategy for Controlled Release of Rosmarinic Acid.

ACS Appl Bio Mater

January 2025

College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, China.

Traditional drug-delivery methods are limited by low bioavailability and nonspecific drug distribution, resulting in poor therapeutic efficacy and potential risks of toxicity. Mesoporous silica nanoparticles (MSNs) have attracted wide attention as drug-delivery carriers due to their large specific surface area, adjustable pore size, good mechanical strength, good biocompatibility, and rich hydroxyl groups on their surface. In this paper, MSNs were synthesized by a template method, and the morphology and pore structure were regulated.

View Article and Find Full Text PDF

Inorganic photochromic materials offer several advantages over organic compounds, including relatively inexpensive and higher thermal stability. However, tuning their color with the same component has remained a significant challenge. In this study, we demonstrate that the photochromic color of Cu-doped ZnS nanocrystals (NCs), which is initially pale yellow before light irradiation, can be tuned from gray to brown by adjusting the surface stoichiometry of Zn and S, which is controlled through the use of thiol and non-thiol ligands.

View Article and Find Full Text PDF

Graphene quantum dots (GQDs) have emerged as promising materials for electrochemiluminescence (ECL) applications due to their unique optical and electronic properties. In this study, GQDs were synthesized via electrochemical exfoliation of graphite in a constant current density mode, enabling scalable production with controlled size and surface functionalization. GQDs-4 and GQDs-20, synthesized at applied current densities of 4 mA/cm2 and 20 mA/cm2 to the graphite electrode, respectively, were investigated on roles of surface states and exciplex dominated aggregation-induced emission (AIE) in their ECL performance.

View Article and Find Full Text PDF

Background: Incorporating β-carotene into food systems improves nutritional value by providing a natural source of vitamin A. However, maintaining its stability during processing and storage is a significant barrier for its bioavailability.

Results: This study investigated the utilization of banana rachis nanocellulose (BRNC) as a natural stabilizer in the formulation of Pickering nanoemulsion (PNE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!