Peptides or proteins containing small biomolecular aggregates, such as micelles, bicelles, droplets and nanodiscs, are pivotal in many fields ranging from structural biology to pharmaceutics. Monitoring dynamics of such systems has been limited by the lack of experimental methods that could directly detect their fast (picosecond to nanosecond) timescale dynamics. Spin relaxation times from NMR experiments are sensitive to such motions, but their interpretation for biomolecular aggregates is not straightforward. Here we show that the dynamic landscape of peptide-containing molecular assemblies can be determined by a synergistic combination of solution state NMR experiments and molecular dynamics (MD) simulations. Solution state NMR experiments are straightforward to implement without an excessive amount of sample, while direct combination of spin relaxation data to MD simulations enables interpretation of dynamic landscapes of peptides and other aggregated molecules. To demonstrate this, we interpret NMR data from transmembrane, peripheral, and tail anchored peptides embedded in micelles. Our results indicate that peptides and detergent molecules do not rotate together as a rigid body, but peptides rotate in a viscous medium composed of detergent micelle. Spin relaxation times also provide indirect information on peptide conformational ensembles. This work gives new perspectives on peptide dynamics in complex biomolecular assemblies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10864328 | PMC |
http://dx.doi.org/10.1038/s42004-024-01115-4 | DOI Listing |
J Neuroinflammation
January 2025
Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, Henan, China.
Background: Intracerebral hemorrhage (ICH) causes prominent deposition of extracellular matrix molecules, particularly the chondroitin sulphate proteoglycan (CSPG) member neurocan. In tissue culture, neurocan impedes the properties of oligodendrocytes. Whether therapeutic reduction of neurocan promotes oligodendrogenesis and functional recovery in ICH is unknown.
View Article and Find Full Text PDFBiomol NMR Assign
January 2025
Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany.
Cyclic GMP-AMP synthase (cGAS) is a DNA-sensing enzyme that is a member of the nucleotidyltransferase (NTase) family and functions as a DNA sensor. The protein is comprised of a catalytic NTase core domain and an unstructured hypervariable N-terminal domain (NTD) that was reported to increase protein activity by providing an additional DNA-binding surface. We report nearly complete H, N, and C backbone chemical-shift assignments of mouse cGAS NTD (residues 5-146), obtained with a set of 3D and 4D solution NMR experiments.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
Background: In response to iron deficiency and other environmental stressors, cyanobacteria producing siderophores can help in ameliorating plant stress and enhancing growth physiological and biochemical processes. The objective of this work was to screen the potential of Arthrospira platensis, Pseudanabaena limnetica, Nostoc carneum, and Synechococcus mundulus for siderophore production to select the most promising isolate, then to examine the potentiality of the isolated siderophore in promoting Zea mays seedling growth in an iron-limited environment.
Results: Data of the screening experiment illustrated that Synechococcus mundulus significantly recorded the maximum highest siderophore production (78 ± 2%) while the minimum production was recorded by Nostoc carneum (24.
J Magn Reson
December 2024
Department of Medicine, University of Alberta, Canada; Department of Biochemistry, University of Alberta, Canada. Electronic address:
Solution NMR studies of large systems are hampered by rapid signal decay. We hereby introduce ROCSY (relaxation-optimized total correlation spectroscopy), which maximizes transfer efficiency across J-coupling-connected spin networks by minimizing the amount of time magnetization spends in the transverse plane. Hard pulses are substituted into the Clean-CITY TOCSY pulse element first developed by Ernst and co-workers, allowing for longer delays in which magnetization is aligned along the z-axis.
View Article and Find Full Text PDFPhytomedicine
December 2024
Scabies Laboratory, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, QLD, Australia. Electronic address:
Background: Scabies is a debilitating and neglected infectious disease with limited effective treatment options and affecting millions of people worldwide, mainly in poor and overcrowded settings. Essential oils from Australasian Myrtaceae are known to have parasiticidal properties, often attributed to the presence of β-triketones, which are known inhibitors of the tyrosine catabolism pathway through inhibition of hydroxyphenylpyruvate dioxygenase (HPPD).
Purpose: In this study, essential oils from mānuka (Leptospermum scoparium) were evaluated in vitro for miticidal and ovicidal activities and their active β-triketone constituents (flavesone, leptospermone, and isoleptospermone) were identified.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!