Keratoconus (KC) is a degenerative disorder resulting from the degradation of the stromal collagen fibril network in the cornea, leading to its thinning and conical deformation. Various studies have established animal models of KC by using the collagenase type II enzyme to gain a better understanding of the pathogenesis, however, long-term monitoring or follow-up of the models have not been reported so far. This study evaluates the long-term stability of collagenase type II-induced KC in a rabbit model. Six New Zealand rabbits were divided into 4 study groups with 3 eyes per group. The groups were control (group 1), 0.5% proparacaine + 5 min collagenase treatment on day 0 and day 30 (group 2), 0.5% proparacaine + 10 min collagenase treatment on day 0 (group 3) and, mechanical debridement + 2 min collagenase treatment on day 0 (group 4). Inflammation was observed in group 4 till week 10. Significant decrease in the central corneal thickness was observed in group 3 by week 4 (p < 0.001) however, the thickness was regained in the subsequent follow-ups in all the groups. Keratography results showed no changes in Km values but an increased astigmatic power in all groups. Scanning electron microscopy images revealed thinner collagen fibrils arranged in a mesh-like pattern above the uniform layer of the collagen lamellae in the central part of the treated corneas. Similarly, histological staining revealed loosely packed stromal fibrils in the anterior portion of the cornea which corroborates with the immunofluorescent staining results. This study revealed the remodeling of the corneal structure by eight weeks of collagenase treatment. Consequently, the possibility of creating a rabbit keratoconus model induced by collagenase may warrant further consideration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.exer.2024.109811 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!