A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Single-atom Mn-embedded carbon nitride as highly efficient peroxymonosulfate catalyst for the harmful algal blooms control. | LitMetric

In recent years, water quality deterioration caused by harmful algal blooms (HABs) has become one of the global drinking water safety issues, and sulfate radical driven heterogeneous advanced oxidation technology has been widely used for algae removal. However, the shortages of low active site exposure, metal leaching, and secondary contamination limit its further application. Therefore, the single-atom Mn anchored on inorganic carbon nitride was constructed to enhance the oxidation and coagulation of algal cells while maintaining cell integrity in this study. The removal efficiency of Microcystis aeruginosa was as high as 100 % within 30 min under the optimal conditions of 400 mg/L single-atom Mn-embedded g-CN (SA-MCN) and 0.32 mM peroxymonosulfate (PMS). Importantly, the K release, malondialdehyde concentration, floccules morphology and variation of algal organic matters further showed that the algal cells still maintained high integrity without severe rupture during the catalytic reaction. Furthermore, the catalytic mechanisms of algae removal by moderate oxidation and simultaneous coagulation in this system were explored by quenching experiments, EPR analysis, theoretical calculation, and Zeta potential. In brief, this study highlighted the single-atom heterogeneous catalyst with high-efficiency and environmental-friendliness in harmful algal blooms control.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.170915DOI Listing

Publication Analysis

Top Keywords

harmful algal
12
algal blooms
12
single-atom mn-embedded
8
carbon nitride
8
blooms control
8
algae removal
8
algal cells
8
algal
6
single-atom
4
mn-embedded carbon
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!