The Rho GTPase binding domain of Plexin-B1 (RBD) prevails in solution as dimer. Under appropriate circumstances, it binds the small GTPase Rac1 to yield the complex RBD-Rac1. Here, we study RBD dimerization and complex formation from a symmetry-based perspective using data derived from 1 μs long MD simulations. The quantities investigated are the local potentials, (MD), prevailing at the N-H sites of the protein. These potentials are statistical in character providing an empirical description of the local structure. To establish more methodical description, a method for approximating them by explicit functions, (simulated), was developed in the preceding article in this journal issue. These functions are combinations of analytical Wigner functions, , belonging to the D point group. The D subgroups A and B are found to dominate (simulated); the B subgroup contributes in some cases. The A (B) functions have axial or rhombic symmetry. For the first time, local potentials in proteins can be quantitatively characterized in terms of their strength (rhombicity) evaluated by axial A (rhombic A and B) contributions. Until now, the chain-segment [β-L3-β] and to some extent the α-helix have been associated with GTPase binding. Here, we find that this process causes an increase (decrease) in the potential strength of β and β (the preceding L2 loop and the remote chain-segment [(α-helix)-(α/β-turn)-(β-strand)]), suggesting effects of counterbalancing and allostery. There is evidence for the L2 loop being associated with RBD-GTPase binding. Until now only the L4 loop has been associated with RBD dimerization. The latter process is found to cause an increase (decrease) in the potential strength and rhombicity of the L4 loop (the adjacent chain-segment [(α-helix)-(α/β-turn)-(β-strand)]), suggesting counterbalancing activity. On average, the RBD dimer features stronger local potentials than RBD-Rac1. The novel information inherent in these findings is mesoscopic in character. Prospects of interest include exploring relation to atomistic force-field parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.3c06745DOI Listing

Publication Analysis

Top Keywords

gtpase binding
12
local potentials
12
rbd dimerization
8
axial rhombic
8
strength rhombicity
8
process increase
8
increase decrease
8
decrease potential
8
potential strength
8
chain-segment [α-helix-α/β-turn-β-strand]
8

Similar Publications

In Saccharomyces cerevisiae cells, the bulk of mitochondrial DNA (mtDNA) replication is mediated by the replicative high-fidelity DNA polymerase γ. However, upon UV irradiation low-fidelity translesion polymerases: Polη, Polζ and Rev1, participate in an error-free replicative bypass of UV-induced lesions in mtDNA. We analysed how translesion polymerases could function in mitochondria.

View Article and Find Full Text PDF

Itaconate facilitates viral infection via alkylating GDI2 and retaining Rab GTPase on the membrane.

Signal Transduct Target Ther

December 2024

National Key Laboratory of Immunity and Inflammation, Naval Medical University, Shanghai, 200433, China.

Metabolic reprogramming of host cells plays critical roles during viral infection. Itaconate, a metabolite produced from cis-aconitate in the tricarboxylic acid cycle (TCA) by immune responsive gene 1 (IRG1), is involved in regulating innate immune response and pathogen infection. However, its involvement in viral infection and underlying mechanisms remain incompletely understood.

View Article and Find Full Text PDF

The potential role of vesicle transport-related small GTPases rabs in abiotic stress responses.

Plant Physiol Biochem

December 2024

Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education)/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University/Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, China. Electronic address:

Rab GTPases are a class of small GTP-binding proteins, play crucial roles in the membrane transport machinery with in eukaryotic cells. They dynamically regulate the precise targeting and tethering of transport vesicles to specific compartments by transitioning between active and inactive states. In plants, Rab GTPases are classified into eight distinct subfamilies: Rab1/D, Rab2/B, Rab5/F, Rab6/H, Rab7/G, Rab8/E, Rab11/A, and Rab18/C.

View Article and Find Full Text PDF

Identifying the Pathogenicity of a Novel NPRL3 Missense Mutation Using Personalized Cortical Organoid Model of Focal Cortical Dysplasia.

J Mol Neurosci

December 2024

Department of Neurosurgery, National Children's Medical Center (Shanghai), Children's Hospital of Fudan University, No.399 Wan Yuan Avenue, Minhang District, Shanghai, 201102, China.

Focal cortical dysplasia (FCD) II is a cortical malformation characterized by cortical architectural abnormalities, dysmorphic neurons, with or without balloon cells. Here, we systematically explored the pathophysiological role of the GATOR1 subunit NPRL3 variants including a novel mutation from iPSCs derived from one FCD II patient. Three FCD II children aged 0.

View Article and Find Full Text PDF

The reproductive lifespan of female mammals is determined by the size of the primordial follicle pool, which comprises oocytes enclosed by a layer of flattened pre-granulosa cells. Oocyte differentiation needs acquiring organelles and cytoplasm from sister germ cells in cysts, but the mechanisms regulating this process remain unknown. Previously helicase for meiosis 1 (HFM1) is reported to be related to the development of premature ovarian insufficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!