Envision the future of precision medicine in pediatric cancer.

Cancer Cell

Cancer and Blood Diseases Institute, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; University of Southern California, Los Angeles, CA 90027, USA. Electronic address:

Published: February 2024

Exploring the diversity within the tumor microenvironment (TME) can offer crucial insights to steer cancer therapy toward precision medicine. In this issue of Cancer Cell, Wienke et al. undertake a comprehensive single-cell analysis of neuroblastoma, unveiling its immune landscape and identifying NECTIN2-TIGIT as a promising target for immunotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ccell.2024.01.006DOI Listing

Publication Analysis

Top Keywords

precision medicine
8
envision future
4
future precision
4
medicine pediatric
4
pediatric cancer
4
cancer exploring
4
exploring diversity
4
diversity tumor
4
tumor microenvironment
4
microenvironment tme
4

Similar Publications

A nationwide cross-sectional study in Saudi Arabia for the assessment of understanding and practices of clinicians towards personalized genetic testing.

Sci Rep

December 2024

Medical Genomics Research Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.

In order to plan and facilitate the culture of personalized / precision medicine in medical practices within any healthcare institution, it is requisite for healthcare professionals like clinicians to have a clear understanding and approach towards the practices of personalized genetic testing. This nationwide cross-sectional study aimed to measure the perceptions and knowledge of clinicians towards personalized genetic testing and assess their current practices of personalized genetic testing in clinical settings through an online self-administered questionnaire in Saudi Arabia. The results of the study revealed that almost two-fifths of participants were responsible for ordering genetic tests directly (39.

View Article and Find Full Text PDF

Warfarin is the most widely used oral anticoagulant in clinical practice. The cytochrome P450 2C9 (CYP2C9), vitamin K epoxide reductase complex 1 (VKORC1), and cytochrome P450 4F2 (CYP4F2) genotypes are associated with warfarin dose requirements in China. Accurate genotyping is vital for obtaining reliable genotype-guided warfarin dosing information.

View Article and Find Full Text PDF

Theranostic drugs represent an emerging path to deliver on the promise of precision medicine. However, bottlenecks remain in characterizing theranostic targets, identifying theranostic lead compounds, and tailoring theranostic drugs. To overcome these bottlenecks, we present the Theranostic Genome, the part of the human genome whose expression can be utilized to combine therapeutic and diagnostic applications.

View Article and Find Full Text PDF

BAY 2413555 is a novel selective and reversible positive allosteric modulator of the type 2 muscarinic acetylcholine (M2) receptor, aimed at enhancing parasympathetic signaling and restoring cardiac autonomic balance for the treatment of heart failure (HF). This study tested the safety, tolerability and pharmacokinetics of this novel therapeutic option. REMOTE-HF was a multicenter, double-blind, randomized, placebo-controlled, phase Ib dose-titration study with two active arms.

View Article and Find Full Text PDF

Quantifying the regulatory potential of genetic variants via a hybrid sequence-oriented model with SVEN.

Nat Commun

December 2024

State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Biomedical Pioneering Innovative Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), Peking University, 100871, Beijing, China.

Deciphering how noncoding DNA determines gene expression is critical for decoding the functional genome. Understanding the transcription effects of noncoding genetic variants are still major unsolved problems, which is critical for downstream applications in human genetics and precision medicine. Here, we integrate regulatory-specific neural networks and tissue-specific gradient-boosting trees to build SVEN: a hybrid sequence-oriented architecture that can accurately predict tissue-specific gene expression level and quantify the tissue-specific transcriptomic impacts of structural variants across more than 350 tissues and cell lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!