Background: Bloodstream infections (BSI) pose a significant threat due to high mortality rates and the challenges posed by antimicrobial resistance (AMR). In 2019, an estimated 4.95 million deaths were linked to bacterial AMR. The highest impact was seen in resource-limited settings (RLS). For diagnosis of BSI, performant continuously-monitoring blood culture systems (CMBCS) have been optimized. However, in RLS, the implementation of CMBCS is hindered by budget constraints and unsuitable environmental conditions. Manufacturers from growing economies are currently producing affordable in vitro diagnostics, which could fill the gap in capacity, but so far these are not established outside their domestic markets.

Methods: This study evaluated the performance, usability, and interchangeability of Chinese CMBCS in a laboratory setting using simulated blood cultures with a panel of 20 BSI-associated strains. Four systems were selected for the assessment: Autobio BC60, Mindray TDR60, Scenker Labstar50, and DL-biotech DL-60.

Findings: Overall, all evaluated CMBCS demonstrated good performance with high yield (96.7-100%) and specificity (97.5-100%), comparable to the reference system (bioMérieux 3D). In addition, when used as "manual" blood cultures in a conventional incubator with visual growth detection, performance was also satisfactory: yield was between 90 and 100% and specificity was 100% for all BCBs. Both the CMBCS and the BCBs were easy to use and lot-to-lot variability in BCBs was minimal. The interchangeability testing indicated that the BCBs from different brands (all except Scenker) were compatible with the various automates, further highlighting the potential for a harmonized "universal BCB."

Interpretation: Based on this in vitro study, we recommend the use of these systems in settings with challenging environments and limited resources. The Autobio system performed best for automatic detection and DL-Biotech BCBs for manual cultures respectively (combination of performance, price, usability). The appropriateness for use in RLS should still be confirmed in a field study.

Funding: The study was funded by FIND.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10874707PMC
http://dx.doi.org/10.1016/j.ebiom.2024.105004DOI Listing

Publication Analysis

Top Keywords

blood culture
8
culture systems
8
resource-limited settings
8
blood cultures
8
cmbcs
5
bcbs
5
affordable blood
4
systems
4
systems china
4
china in vitro
4

Similar Publications

Fibroblast activation protein peptide-targeted NIR-I/II fluorescence imaging for stable and functional detection of hepatocellular carcinoma.

Eur J Nucl Med Mol Imaging

January 2025

Department of Hepatobiliary Surgery and Liver Transplantation Center, The Fifth Affiliated Hospital of Sun Yat-Sen University, 52 Mei Hua East Road, Zhuhai, 519000, China.

Purpose: Cancer-associated fibroblasts (CAFs) are the primary stromal component of the tumor microenvironment in hepatocellular carcinoma (HCC), affecting tumor progression and post-resection recurrence. Fibroblast activation protein (FAP) is a key biomarker of CAFs. However, there is limited evidence on using FAP as a target in near-infrared (NIR) fluorescence imaging for HCC.

View Article and Find Full Text PDF

The Hepatorenal Syndrome-Acute Kidney Injury (HRS-AKI) patients infected with methicillin-resistant (MRSA) urgently require safe and effective treatment options due to their compromised hepatic and renal functions, as well as thrombocytopenia resulting from hypersplenism. In our case, an HRS-AKI patient who underwent continuous renal replacement therapy for fluid overload developed fever with chills. His blood tests indicated elevated C-reactive protein and neutrophils, low platelet count, and bilateral lung infiltrates.

View Article and Find Full Text PDF

Introduction: Serum levels of interleukin-6 (IL-6) are increased in COVID-19 patients. IL-6 is an effective therapeutic target in inflammatory diseases and tocilizumab, a monoclonal antibody that blocks signaling via the IL-6 receptor (IL-6R), is used to treat patients with severe COVID-19. However, the IL-6R exists in membrane-bound and soluble forms (sIL-6R), and the sIL-6R in combination with soluble glycoprotein 130 (sgp130) forms an IL-6-neutralizing buffer system capable of neutralizing small amounts of IL-6.

View Article and Find Full Text PDF

Background: Blood culture contaminants can lead to inappropriate antibiotic use, prolonged length of stay, and additional hospital costs. Several devices have been developed to reduce the risk of blood culture contamination by diverting a portion of the initial blood sample from the blood culture bottle. We assessed the effectiveness of 1 blood diversion device (BDD) in a prospective trial performed at the 2 separate emergency departments (EDs) of an academic medical center.

View Article and Find Full Text PDF

RhoA/ROCK2 signaling pathway regulates Mn-induced alterations in tight junction proteins leading to cognitive dysfunction in mice.

Curr Res Toxicol

December 2024

Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Chang Le Xi Road, Xi'an,Shaanxi 710032, China.

Elevated manganese (Mn) exposure has been implicated in a broad spectrum of neurological disorders, including motor dysfunction and cognitive deficits. Previous studies have demonstrated that Mn induces neurotoxicity by disrupting the integrity of the blood-brain barrier (BBB), a critical regulator in maintaining central nervous system homeostasis and a contributing factor in the pathogenesis of numerous neurological disorders. However, the precise molecular mechanisms underlying Mn-induced BBB disruption and its role in facilitating neurotoxicity remain incompletely understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!