A demonstration of an off-chip capacitance array sensor with a limit of detection of 1 μM trimethylamine N-oxide (TMAO) to diagnose a chronic metabolism disease in urine is presented. The improved Cole-Cole model is employed to determine the parameters of , , and , enabling the prediction of the catalytic resistance of enzyme, reduction effects of the analyte, and characterize the small signal alternating current properties of ionic strength caused by catalysis. Based on the standard solutions, we investigate the effects of pixel geometry parameters, driving electrode width, and sensing electrode width on the electrical field change of the off-chip capacitance sensor; the proposed off-chip sensor with readout system-on-chip exhibits a high sensitivity of 21 analog-to-digital converter counts/μM TMAO (or 2.5 mV/μM TMAO), response time of 1 s, repetition of 98.9%, and drift over time of 0.5 mV. The proposed off-chip sensor effectively discriminates TMAO in a phosphate-buffered saline solution based on minute changes in capacitance induced by the TorA enzyme, resulting in a discernible 2.15% distinction. These measurements have been successfully corroborated using the conventional cyclic voltammetry method, demonstrating a mere 0.024% variance. The off-chip sensor is crafted with a specific focus on detecting TMAO, achieved by excluding any reduction reactions between the TMAO-specific enzyme TorA and the compounds creatine and creatinine present in urine. This deliberate omission ensures that the sensor's attention remains solely on TMAO, thereby enhancing its precision in achieving accurate and reliable TMAO detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssensors.3c01699 | DOI Listing |
Sensors (Basel)
November 2024
Institute of Electrodynamics, Microwave and Circuit Engineering, TU Wien, Gusshausstrasse 25/E354-02, A-1040 Wien, Austria.
It is shown that the integration of a single-photon avalanche diode (SPAD) together with a BiCMOS gating circuit on one chip reduces the parasitic capacitance a lot and therefore reduces the avalanche build-up time. The capacitance of two bondpads, which are necessary for the connection of an SPAD chip and a gating chip, are eliminated by the integration. The gating voltage transients of the SPAD are measured using an integrated mini-pad and a picoprobe.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
August 2024
This paper presents a 10-channel, 120 nW/channel, reconfigurable capacitance-to-digital converter (CDC) enabling sub- μW wearable sensing applications. The proposed multi-channel architecture supports 10 channels with a shared reconfigurable 6-bit differential analog-to-digital converter (ADC). The reconfigurable nature of the CDC enables adaptive sensing range and sensing speed based on the target application.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
June 2024
This article describes a low noise and ultra-high input impedance active electrode (AE) interface chip for dry-electrode EEG recording. To compensate the input parasitic capacitance and the ESD leakage, power/ground/ESD bootstrapping is proposed. This design integrates chopping stabilization technique to suppress flicker noise of the amplifier which has never been tackled in previous bootstrapped AE design.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
October 2024
We present a mm-sized, ultrasonically powered lensless CMOS image sensor as a progress towards wireless fluorescence microscopy. Access to biological information within the tissue has the potential to provide insights guiding diagnosis and treatment across numerous medical conditions including cancer therapy. This information, in conjunction with current clinical imaging techniques that have limitations in obtaining images continuously and lack wireless compatibility, can improve continual detection of multicell clusters deep within tissue.
View Article and Find Full Text PDFACS Sens
February 2024
Department of Trauma and Emergency, Chang Gung Memorial Hospital, Linko 33302, Taiwan.
A demonstration of an off-chip capacitance array sensor with a limit of detection of 1 μM trimethylamine N-oxide (TMAO) to diagnose a chronic metabolism disease in urine is presented. The improved Cole-Cole model is employed to determine the parameters of , , and , enabling the prediction of the catalytic resistance of enzyme, reduction effects of the analyte, and characterize the small signal alternating current properties of ionic strength caused by catalysis. Based on the standard solutions, we investigate the effects of pixel geometry parameters, driving electrode width, and sensing electrode width on the electrical field change of the off-chip capacitance sensor; the proposed off-chip sensor with readout system-on-chip exhibits a high sensitivity of 21 analog-to-digital converter counts/μM TMAO (or 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!