Implicit Neural representations (INRs) are widely used for scientific data reduction and visualization by modeling the function that maps a spatial location to a data value. Without any prior knowledge about the spatial distribution of values, we are forced to sample densely from INRs to perform visualization tasks like iso-surface extraction which can be very computationally expensive. Recently, range analysis has shown promising results in improving the efficiency of geometric queries, such as ray casting and hierarchical mesh extraction, on INRs for 3D geometries by using arithmetic rules to bound the output range of the network within a spatial region. However, the analysis bounds are often too conservative for complex scientific data. In this paper, we present an improved technique for range analysis by revisiting the arithmetic rules and analyzing the probability distribution of the network output within a spatial region. We model this distribution efficiently as a Gaussian distribution by applying the central limit theorem. Excluding low probability values, we are able to tighten the output bounds, resulting in a more accurate estimation of the value range, and hence more accurate identification of iso-surface cells and more efficient iso-surface extraction on INRs. Our approach demonstrates superior performance in terms of the iso-surface extraction time on four datasets compared to the original range analysis method and can also be generalized to other geometric query tasks.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TVCG.2024.3365089DOI Listing

Publication Analysis

Top Keywords

iso-surface extraction
16
range analysis
12
improving efficiency
8
implicit neural
8
neural representations
8
scientific data
8
extraction inrs
8
arithmetic rules
8
spatial region
8
iso-surface
5

Similar Publications

Neural implicit function based on signed distance field (SDF) has achieved impressive progress in reconstructing 3D models with high fidelity. However, such approaches can only represent closed surfaces. Recent works based on unsigned distance function (UDF) are proposed to handle both watertight and single-layered open surfaces.

View Article and Find Full Text PDF

Geometric Deep Learning has recently made striking progress with the advent of continuous deep implicit fields. They allow for detailed modeling of watertight surfaces of arbitrary topology while not relying on a 3D euclidean grid, resulting in a learnable parameterization that is unlimited in resolution. Unfortunately, these methods are often unsuitable for applications that require an explicit mesh-based surface representation because converting an implicit field to such a representation relies on the Marching Cubes algorithm, which cannot be differentiated with respect to the underlying implicit field.

View Article and Find Full Text PDF

Implicit Neural representations (INRs) are widely used for scientific data reduction and visualization by modeling the function that maps a spatial location to a data value. Without any prior knowledge about the spatial distribution of values, we are forced to sample densely from INRs to perform visualization tasks like iso-surface extraction which can be very computationally expensive. Recently, range analysis has shown promising results in improving the efficiency of geometric queries, such as ray casting and hierarchical mesh extraction, on INRs for 3D geometries by using arithmetic rules to bound the output range of the network within a spatial region.

View Article and Find Full Text PDF

Automatic registration of dental CT and 3D scanned model using deep split jaw and surface curvature.

Comput Methods Programs Biomed

May 2023

Division of Biomedical Engineering, Hankuk University of Foreign Studies, 81 Oedae-ro, Mohyeon-myeon, Cheoin-gu, Yongin-si, Gyeonggi-do 17035, Republic of Korea. Electronic address:

Background And Objectives: In the medical field, various image registration applications have been studied. In dentistry, the registration of computed tomography (CT) volume data and 3D optically scanned models is essential for various clinical applications, including orthognathic surgery, implant surgical planning, and augmented reality. Our purpose was to present a fully automatic registration method of dental CT data and 3D scanned models.

View Article and Find Full Text PDF

Simultaneously visualizing Amyloid-β (Aβ) plaque with its surrounding brain structures at the subcellular level in the intact brain is essential for understanding the complex pathology of Alzheimer's disease, but is still rarely achieved due to the technical limitations. Combining the micro-optical sectioning tomography (MOST) system, whole-brain Nissl staining, and customized image processing workflow, we generated a whole-brain panorama of Alzheimer's disease mice without specific labeling. The workflow employed the steps that include virtual channel splitting, feature enhancement, iso-surface rendering, direct volume rendering, and feature fusion to extract and reconstruct the different signals with distinct gray values and morphologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!