Light-triggered molecular switches are extensively researched for their applications in medicine, chemistry and material science and, if combined, particularly for their use in multifunctional smart materials, for which orthogonally, individually, addressable photoswitches are needed. In such a multifunctional mixture, the switching properties, efficiencies and the overall performance may be impaired by undesired mutual dependences of the photoswitches on each other. Within this study, we compare the performance of the pure photoswitches, namely an azobenzene derivative (Azo) and a donor-acceptor Stenhouse adduct (DASA), with the switching properties of their mixture using time-resolved temperature-dependent UV/VIS absorption spectroscopy, time-resolved IR absorption spectroscopy at room temperature and quantum mechanical calculations to determine effective cross sections, switching kinetics as well as activation energies of thermally induced steps. We find slightly improved effective cross sections, percentages of switched molecules and no increased activation barriers of the equimolar mixture compared to the single compounds. Thus, the studied mixture Azo + DASA is very promising for future applications in multifunctional smart materials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp05786kDOI Listing

Publication Analysis

Top Keywords

azobenzene derivative
8
donor-acceptor stenhouse
8
stenhouse adduct
8
multifunctional smart
8
smart materials
8
switching properties
8
absorption spectroscopy
8
effective cross
8
cross sections
8
characteristics long-term
4

Similar Publications

Photo-Controllable Förster Resonance Energy Transfer Based on Dynamic Chiral Self-Assembly of Sequence-Defined Amphiphilic Alternating Azopeptoids.

Small

January 2025

Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.

Endowing biomimetic sequence-controlled polymers with chiral functionality to construct stimuli-responsive chiral materials offers a promising approach for innovative chiroptical switch, but it remains challenging. Herein, it is reported that the self-assembly of sequence-defined chiral amphiphilic alternating azopeptoids to generate photo-responsive and ultrathin bilayer peptoidosomes with a vesicular thickness of ≈1.50 nm and a diameter of around ≈290 nm.

View Article and Find Full Text PDF

Stimulus-Responsive Organometallic Assemblies Based on Azobenzene-Functionalized Poly-NHC Ligands.

Chem Asian J

January 2025

Northwest University, College of Chemistry and Materials Science, 1 Xuefu Ave., Guodu Education and Hi-Tech Industries Zone, Chang'an District, 710127, Xi'an, CHINA.

The reversible photoisomerization of azobenzene (AZB) and its derivatives has been applied across various fields. Developing discrete AZB-functionalized organometallic cages is essential for manufacturing functional materials. In this work, we designed and fabricated a series of three-dimensional, hexaazobenzene-terminated poly-NHC-based (NHC = N-heterocyclic carbene) complexes [M3(A)2](BF4)3 and [M3(B)2](BF4)3 (M = Ag, Au).

View Article and Find Full Text PDF

The discovery of a multi-target scaffold in medicinal chemistry is an important goal for the development of new drugs with different biological effects. Azobenzene is one of the frameworks in medicinal chemistry used for its simple synthetic methods and for the possibility to obtain a great variety of derivatives by simple chemical modifications or substitutions. Phenyldiazenyl-containing compounds show a wide spectrum of pharmacological activities, such as antimicrobial, anti-inflammatory, anti-neurodegenerative, anti-cancer, and anti-enzymatic.

View Article and Find Full Text PDF

Short Aromatic Blocks Enhance Styrene Conversion in Polymer Cubosome Formation via Polymerization-Induced Self-Assembly.

Macromol Rapid Commun

January 2025

School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China.

Polymer cubosomes (PCs) have garnered significant interest in the field of nanomaterials and nanotechnology due to their unique properties and potential applications. However, the fabrication of PCs remains challenging. Polymerization-induced self-assembly (PISA) is recognized as an efficient method for producing a variety of polymer particles, including PCs.

View Article and Find Full Text PDF

Photo-responsive organogelator based on cholesterol incorporated sugar-azobenzene derivatives.

Carbohydr Res

December 2024

Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur, 610 005, India. Electronic address:

In this report, the design and synthesis of cholesterol-based sugar azobenzene derivatives as photo-responsive organogelators have been carried out. The gel formation in different solvents was examined, and a minimum CGC of 0.5 % (w/v) was attained in toluene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!