Ketelhut, S, Ketelhut, K, Ketelhut, SR, and Ketelhut, RG. Effects of school-based high-intensity interval training on hemodynamic parameters and heart rate variability: A randomized controlled trial. J Strength Cond Res 38(6): 1033-1040, 2024-The purpose of this study was to assess the effects of a child-specific school-based high-intensity interval training (HIIT) implemented into physical education (PE) classes on various hemodynamic parameters and heart rate variability indices. Forty-six students (age 11 ± 1 year) were randomized into an intervention (INT n = 22) and a control group (CON n = 24). During a 12-week period, the INT and CON groups participated in regular PE twice weekly (45-90 minutes). The INT group received HIIT during the first 20 minutes of the 2 PE classes. Systolic and diastolic blood pressure, total peripheral resistance, aortic pulse wave velocity (aPWV), heart rate, SD of normal to normal heartbeat intervals, the root mean square of successive differences between normal heartbeats (RMSSD), the proportion of differences between adjacent normal to normal heartbeat intervals of more than 50 ms, low-frequency power, high-frequency power, and the LF/HF ratio were assessed before and after the experimental period. A p value ≤0.05 was considered statistically significant. Forty students (20 INT; 20 CON) were included in the analysis. A significant time × group interaction was detected for aPWV ( p = 0.05, η2 = 0.099), RMSSD ( p = 0.010, η2 = 0.161), low-frequency power ( p = 0.009, η2 = 0.165), high-frequency power ( p < 0.001, η2 = 0.272), and the LF/HF ratio ( p < 0.001, η2 = 0.354). The INT group revealed significant improvements for the respective parameters. School-based HIIT can induce improvements in cardiovascular parameters. These results highlight the potential of embedding HIIT within the school setting, offering a time-efficient exercise intervention.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1519/JSC.0000000000004744 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!