Thyroid cancer is a highly differentiated and poorly malignant tumor. Interfering with glycolysis has become an effective means of controlling cancer progression and autophagy is negatively correlated with glycolysis. Aldo-keto reductase family 1 member C3 (AKR1C3) has been demonstrated to be highly expressed in thyroid cancer tissue and the higher AKR1C3 expression predicted the worse prognosis. We aimed to explore whether AKR1C3 could affect thyroid cancer progression by regulating autophagy-dependent glycolysis. AKR1C3 expression in thyroid cancer cells was detected by western blot. Then, AKR1C3 was knocked down by transfection with short hairpin RNA specific to AKR1C3 in the absence or presence of 3-methyladenine (3-MA) or PMA treatment. Cell cycle and apoptosis was detected by flow cytometry. Immunofluorescence staining was used to analyze LC3B expression. Extracellular acidification, glucose uptake and lactic acid secretion were detected. To evaluate the tumorigenicity of AKR1C3 insufficiency on thyroid cancer in vivo, TPC-1 cells with AKR1C3 knockdown were injected subcutaneously into nude mice. Then, cyclinD1 and Ki67 expression in tumorous tissues was measured by immunohistochemical analysis. Apoptosis was assessed by terminal-deoxynucleoitidyl transferase mediated nick end labeling staining. Additionally, the expression of proteins related to cell cycle, apoptosis, glycolysis, autophagy, and extracellular signal-regulated kinase (ERK) signaling in cells and tumor tissues was assessed by western blot. Highly expressed AKR1C3 was observed in thyroid cancer cells. AKR1C3 knockdown induced cell cycle arrest and apoptosis of TPC-1 cells. Besides, autophagy was activated and glycolysis was inhibited following AKR1C3 silencing, and 3-MA treatment restored the impacts of AKR1C3 silencing on glycolysis. The further experiments revealed that AKR1C3 insufficiency inhibited ERK signaling and PMA application reversed AKR1C3 silencing-induced autophagy in TPC-1 cells. The in vivo results suggested that AKR1C3 knockdown inhibited the development of subcutaneous TPC-1 tumors in nude mice and inactivated the ERK signaling. Collectively, AKR1C3 silencing inhibited autophagy-dependent glycolysis in thyroid cancer by inactivating ERK signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ddr.22142DOI Listing

Publication Analysis

Top Keywords

thyroid cancer
32
erk signaling
20
akr1c3
17
akr1c3 silencing
16
autophagy-dependent glycolysis
12
cancer cells
12
cell cycle
12
tpc-1 cells
12
akr1c3 knockdown
12
cancer
9

Similar Publications

Background: Radioactive iodine (RAI) is a common treatment for various thyroid diseases. Previous studies have suggested susceptibility of parathyroid glands to the mutagenic effect of RAI and the development of primary hyperparathyroidism (PHPT). We tested the possible link between prior RAI treatment, disease presentation, and treatment outcomes.

View Article and Find Full Text PDF

In the primary analysis of the open-label phase III PRECIOUS study, pertuzumab retreatment combined with trastuzumab plus chemotherapy of physician's choice (PTC) significantly improved investigator-assessed progression-free survival (PFS) compared with trastuzumab plus physician's choice chemotherapy (TC) in patients with human epidermal growth factor receptor 2 (HER2)-positive locally advanced/metastatic breast cancer (LA/mBC). Here, we report final overall survival (OS) at the median follow-up of 25.8 months.

View Article and Find Full Text PDF

Background: This study aims to establish the characteristics of second primary neoplasms (SPNs) and the long-term follow-up status of a tertiary pediatric oncology center.

Methods: Records of 1799 patients followed up in the pediatric oncology division between January 1981 and December 2022 were evaluated retrospectively.

Results: Thirty-four (1.

View Article and Find Full Text PDF

Background: Bone metastasis is associated with a poor prognosis. Bone-modifying agents (BMA) are commonly used for the prevention or treatment of skeletal-related events (SRE) in patients with bone metastasis; however, whether or not treatment with BMA improves survival remains unclear. In this study, we investigated whether BMA was involved in post-bone metastasis survival.

View Article and Find Full Text PDF

In exploring adjuvant therapies for head and neck cancer, hyperthermia (40-45 °C) has shown efficacy in enhancing chemotherapy and radiation, as well as the delivery of liposomal drugs. Current hyperthermia treatments, however, struggle to reach large deep tumors uniformly and non-invasively. This study investigates the feasibility of delivering targeted uniform hyperthermia deep into the tissue using a non-invasive ultrasound spherical random phased array transducer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!