Our previous studies have highlighted the potential therapeutic efficacy of dendrobine, an alkaloid, in atherosclerosis (AS), nevertheless, the underlying mechanism remains unclear. This study employs a combination of network pharmacology and in vitro experiments to explore the regulatory pathways involved. Through network pharmacology, the biological function for intersection targets between dendrobine and AS were identified. Molecular docking was conducted to investigate the interaction between the dominant target and dendrobine. Human umbilical vein endothelial cells (HUVECs) were treated with oxidized low-density lipoprotein (ox-LDL) to mimic AS, and the effects of dendrobine on cell viability, lipid deposition, mitochondrial function, and cellular senescence were evaluated. Subsequently, cells were treated with the mitophagy inhibitor Mdivi-1 and the STAT3 agonist colivelin to assess the role of mitophagy and STAT3 signaling in dendrobine regulation. Intersection targets were associated with biological processes, including reactive oxygen species production. Dendrobine attenuated the effects of ox-LDL treatment on HUVECs, mitigating changes in cell activity, lipid deposition, mitochondrial function, and cellular senescence. Both Mdivi-1 and colivelin treatments resulted in decreased cell viability and increased cellular senescence, with colivelin suppressing mitophagy. Cotreatment with Mdivi-1 and colivelin further aggravated cellular senescence and inhibited FoxO signaling. Together, this study indicated that dendrobine regulated the STAT3/FoxO signaling pathway, alleviating mitochondrial dysfunction and cellular senescence. This study contributes valuable insights to the potential clinical application of dendrobine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ddr.22152 | DOI Listing |
Aging (Albany NY)
January 2025
Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA.
Exposure to ionizing radiation (IR), both low-LET (e.g., X-rays, γ rays) and high-LET (e.
View Article and Find Full Text PDFCells
January 2025
Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
The p63 protein is a master regulatory transcription factor that plays crucial roles in cell differentiation, adult tissue homeostasis, and chromatin remodeling, and its dysregulation is associated with genetic disorders, physiological and premature aging, and cancer. The effects of p63 are carried out by two main isoforms that regulate cell proliferation and senescence. p63 also controls the epigenome by regulating interactions with histone modulators, such as the histone acetyltransferase p300, deacetylase HDAC1/2, and DNA methyltransferases.
View Article and Find Full Text PDFCells
December 2024
Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan.
The Hippo pathway, a kinase cascade, coordinates with many intracellular signals and mediates the regulation of the activities of various downstream transcription factors and their coactivators to maintain homeostasis. Therefore, the aberrant activation of the Hippo pathway and its associated molecules imposes significant stress on tissues and cells, leading to cancer, immune disorders, and a number of diseases. Cellular senescence, the mechanism by which cells counteract stress, prevents cells from unnecessary damage and leads to sustained cell cycle arrest.
View Article and Find Full Text PDFInt J Mol Med
March 2025
Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China.
Retinal pigment epithelial (RPE) cells undergoing epithelial‑mesenchymal transition (EMT) are a key factor in promoting the progression of subretinal fibrosis. The klotho protein and gene exert anti‑fibrotic effects in multiple fibrotic diseases. However, the mechanisms involved in the role of klotho are unclear in subretinal fibrosis.
View Article and Find Full Text PDFAging Cell
January 2025
Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Beijing, China.
The current mechanism by which aging reduces salivary secretion is unknown. This study investigates the mechanism of aging-related submandibular (SMG) dysfunction and evaluates the therapeutic potential of dental pulp stem cell-derived exosomes (DPSC-exos). We found that the stimulated salivary flow rate was significantly reduced in naturally aging and D-galactose-induced aging mice (D-gal mice) compared to control mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!