Mammalian promoters consist of multifarious elements, which make them unique and support the selection of the proper transcript variants required under diverse conditions in distinct cell types. However, their direct DNA-transcription factor (TF) interactions are mostly unidentified. Murine bone marrow-derived macrophages (BMDMs) are a widely used model for studying gene expression regulation. Thus, this model serves as a rich source of various next-generation sequencing data sets, including a large number of TF cistromes. By processing and integrating the available cistromic, epigenomic and transcriptomic data from BMDMs, we characterized the macrophage-specific direct DNA-TF interactions, with a particular emphasis on those specific for promoters. Whilst active promoters are enriched for certain types of typically methylatable elements, more than half of them contain non-methylatable and prototypically promoter-distal elements. In addition, circa 14% of promoters-including that of Csf1r-are composed exclusively of 'distal' elements that provide cell type-specific gene regulation by specialized TFs. Similar to CG-rich promoters, these also contain methylatable CG sites that are demethylated in a significant portion and show high polymerase activity. We conclude that this unusual class of promoters regulates cell type-specific gene expression in macrophages, and such a mechanism might exist in other cell types too.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11077085 | PMC |
http://dx.doi.org/10.1093/nar/gkae088 | DOI Listing |
Eur J Cancer
January 2025
Department of Hematology, Oncology and Cancer Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; German Cancer Consortium (DKTK), Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany; Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany. Electronic address:
Background: Despite remarkable clinical efficacy, little is known about the system-wide immunological alterations provoked by PD1 blockade. Dynamics of quantitative immune composition and functional repertoire during PD1 blockade could delineate cohort-specific patterns of treatment response and therapy-induced toxicity.
Methods: We longitudinally assessed therapy-induced effects on the immune system in fresh whole blood using flow cytometry-based cell quantifications, accompanied by analyses of effector properties of all major immune populations upon cell-type specific stimulations.
Brain
January 2025
Department of Neurology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China.
Epilepsy is a network disorder, involving neural circuits at both the micro- and macroscale. While local excitatory-inhibitory imbalances are recognized as a hallmark at the microscale, the dynamic role of distinct neuron types during seizures remain poorly understood. At the macroscale, interactions between key nodes within the epileptic network, such as the central median thalamic nucleus (CMT), are critical to the, hippocampal epileptic process.
View Article and Find Full Text PDFJ Virol
January 2025
Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada.
Unlabelled: Enteroviruses cause nearly 1 billion global infections annually and are associated with a diverse array of human illnesses. Among these, myocarditis and the resulting chronic inflammation have been recognized as major contributing factors to virus-induced heart failure. Despite our growing understanding, very limited therapeutic strategies have been developed to address the pathological consequences of virus-induced chronic innate immune activation.
View Article and Find Full Text PDFJ Physiol Investig
January 2025
Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that regulates cell immune responses in a cell type-specific and ligand-dependent manner. In the central nervous system, astrocytic AhR plays important roles in regulating neuroinflammation by mediating responses to endogenous ligands generated from the inflammation-induced indoleamine 2,3-dioxygenase 1 (IDO1)/kynurenine (KYN) pathway. We previously demonstrated that reduction of AhR expression decreases lipopolysaccharide (LPS)-induced pro-inflammatory responses in microglia.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632 014, Tamil Nadu, India.
Systemic lupus erythematosus (SLE) is a systemic autoimmune disorder characterized by the production of autoantibodies, resulting in inflammation and organ damage. Although extensive research has been conducted on SLE pathogenesis, a comprehensive understanding of its molecular landscape in different cell types has not been achieved. This study uncovers the molecular mechanisms of the disease by thoroughly examining gene regulatory networks within neutrophils, dendritic cells, T cells, and B cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!