The occurrence of pelvic organ prolapse (POP) seriously affects women's quality of life. However, the pathogenesis of POP remains unclear. We aimed to clarify the role of Frizzled class receptor 3 (FZD3) in POP. FZD3 expression in the vaginal wall tissues was detected using immunohistochemistry, real-time polymerase chain reaction, and western blot analysis. Then, vaginal wall fibroblasts (VWFs) were isolated from patients with POP and non-POP, and were identified. Cell viability and apoptosis were evaluated using Cell Counting Kit-8 and flow cytometry, respectively. Extracellular matrix (ECM) degradation was assessed by western blot analysis. The results illustrated that FZD3 was downregulated in POP. VWFs from POP had lower cell viability, ECM degradation, and higher apoptosis. Knockdown of FZD3 inhibited cell viability, ECM degradation, and promoted apoptosis of VWFs, whereas overexpression of FZD3 had opposite results. Moreover, IWP-4 (Wingless-type [Wnt] pathway inhibitor) reversed the role of FZD3 overexpression on biological behaviors. Taken together, FZD3 facilitates VWFs viability, ECM degradation, and inhibits apoptosis via the Wnt pathway in POP. The findings provide a potential target for the treatment of POP.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbt.23654DOI Listing

Publication Analysis

Top Keywords

ecm degradation
16
vaginal wall
12
cell viability
12
viability ecm
12
fzd3
8
viability apoptosis
8
extracellular matrix
8
wall fibroblasts
8
pelvic organ
8
organ prolapse
8

Similar Publications

Neuroinflammation is a complex and multifaceted process that involves dynamic interactions among various cellular and molecular components. This sophisticated interplay supports both environmental adaptability and system resilience in the central nervous system (CNS) but may be disrupted during neuroinflammation. In this article, we first characterize the key players in neuroimmune interactions, including microglia, astrocytes, neurons, immune cells, and essential signaling molecules such as cytokines, neurotransmitters, extracellular matrix (ECM) components, and neurotrophic factors.

View Article and Find Full Text PDF

Effect of Adipose Stem Cells Injection on Type VII and VIII Collagen Expression of Wistar Rat's Gingiva.

J Contemp Dent Pract

September 2024

Department of Periodontics, Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia, Phone: +082146474590, e-mail:

Aims: This study investigated the effect of injection of adipose stem cells (ASCs) on the expression of type VII and VIII collagen in Wistar rat's gingiva. Adipose stem cells can modulate the immune system, angiogenesis, wound healing, and extracellular matrix (ECM) remodeling.

Materials And Methods: Ten Wistar rats aged three months were divided into two groups: the treatment group and the control group.

View Article and Find Full Text PDF

Recent advancements in tissue engineering have promoted the development of nerve guidance conduits (NGCs) that significantly enhance peripheral nerve injury treatment, improving outcomes and recovery rates. However, utilising tailored biomimetic three-dimensional (3D) topological porous structures combined with multiple bio-effect neurotrophic factors to create environments similar to neural tissues, regulate local immune responses, and develop a supportive microenvironment to promote peripheral nerve regeneration and repair poses significant challenges. Herein, a biomimetic extracellular matrix (ECM) NGC featuring an interconnected 3D porous network and sustained delivery of insulin-like growth factor-1 (IGF-1) is designed using multi-functional gelatine microcapsules (GMs).

View Article and Find Full Text PDF

Mesenchymal stromal cells promote the formation of lung cancer organoids via Kindlin-2.

Stem Cell Res Ther

January 2025

Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.

Background: Patient-derived lung cancer organoids (PD-LCOs) demonstrate exceptional potential in preclinical testing and serve as a promising model for the multimodal management of lung cancer. However, certain lung cancer cells derived from patients exhibit limited capacity to generate organoids due to inter-tumor or intra-tumor variability. To overcome this limitation, we have created an in vitro system that employs mesenchymal stromal cells (MSCs) or fibroblasts to serve as a supportive scaffold for lung cancer cells that do not form organoids.

View Article and Find Full Text PDF

Sarcolemma resilience and skeletal muscle health require O-mannosylation of dystroglycan.

Skelet Muscle

January 2025

Department of Molecular Physiology and Biophysics, and Department of Neurology, Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.

Background: Maintaining the connection between skeletal muscle fibers and the surrounding basement membrane is essential for muscle function. Dystroglycan (DG) serves as a basement membrane extracellular matrix (ECM) receptor in many cells, and is also expressed in the outward-facing membrane, or sarcolemma, of skeletal muscle fibers. DG is a transmembrane protein comprised of two subunits: alpha-DG (α-DG), which resides in the peripheral membrane, and beta-DG (β-DG), which spans the membrane to intracellular regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!