Introduction: It has been suggested that schizophrenia involves dysconnectivity between functional brain regions and also the white matter structural disorganisation. Thus, diffusion tensor imaging (DTI) has widely been used for studying schizophrenia. However, most previous studies have used the region of interest (ROI) based approach. We, therefore, performed the probabilistic tractography method in this study to reveal the alterations of white matter tracts in the schizophrenia brain.

Methods: A total of four different datasets consisted of 189 patients with schizophrenia and 213 healthy controls were investigated. We performed retrospective harmonisation of raw diffusion MRI data by dMRIharmonisation and used the FMRIB Software Library (FSL) for probabilistic tractography. The connectivities between different ROIs were then compared between patients and controls. Furthermore, we evaluated the relationship between the connection probabilities and the symptoms and cognitive measures in patients with schizophrenia.

Results: After applying Bonferroni correction for multiple comparisons, 11 different tracts showed significant differences between patients with schizophrenia and healthy controls. Many of these tracts were associated with the basal ganglia or cortico-striatal structures, which aligns with the current literature highlighting striatal dysfunction. Moreover, we found that these tracts demonstrated statistically significant relationships with few cognitive measures related to language, executive function, or processing speed.

Conclusion: We performed probabilistic tractography using a large, harmonised dataset of diffusion MRI data, which enhanced the statistical power of our study. It is important to note that most of the tracts identified in this study, particularly callosal and cortico-striatal streamlines, have been previously implicated in schizophrenia within the current literature. Further research with harmonised data focusing specifically on these brain regions could be recommended.

Download full-text PDF

Source
http://dx.doi.org/10.1017/neu.2024.2DOI Listing

Publication Analysis

Top Keywords

probabilistic tractography
16
white matter
12
brain regions
8
performed probabilistic
8
patients schizophrenia
8
healthy controls
8
diffusion mri
8
mri data
8
cognitive measures
8
current literature
8

Similar Publications

The striatum is divided into two interdigitated tissue compartments, the striosome and matrix. These compartments exhibit distinct anatomical, neurochemical, and pharmacological characteristics and have separable roles in motor and mood functions. Little is known about the functions of these compartments in humans.

View Article and Find Full Text PDF

Purpose: Objective information about the central auditory pathways in vestibular schwannoma can guide strategies for hearing rehabilitation and prognostication. This study aims to generate this information using diffusion tensor imaging (DTI).

Methods: This is a prospective observational single center study including 35 patients with vestibular schwannoma and 40 controls.

View Article and Find Full Text PDF

Real-Time Tractography-Assisted Neuronavigation for Transcranial Magnetic Stimulation.

Hum Brain Mapp

January 2025

Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo, Finland.

State-of-the-art navigated transcranial magnetic stimulation (nTMS) systems can display the TMS coil position relative to the structural magnetic resonance image (MRI) of the subject's brain and calculate the induced electric field. However, the local effect of TMS propagates via the white-matter network to different areas of the brain, and currently there is no commercial or research neuronavigation system that can highlight in real time the brain's structural connections during TMS. This lack of real-time visualization may overlook critical inter-individual differences in brain connectivity and does not provide the opportunity to target brain networks.

View Article and Find Full Text PDF

Networks in the parietal and premotor cortices enable essential human abilities regarding motor processing, including attention and tool use. Even though our knowledge on its topography has steadily increased, a detailed picture of hemisphere-specific integrating pathways is still lacking. With the help of multishell diffusion magnetic resonance imaging, probabilistic tractography, and the Graph Theory Analysis, we investigated connectivity patterns between frontal premotor and posterior parietal brain areas in healthy individuals.

View Article and Find Full Text PDF

Introduction: Subthalamic nucleus deep brain stimulation (STN DBS) improves motor symptoms of Parkinson's disease (PD), but its effect on motivation is controversial. Apathy, the lack of motivation, commonly occurs in PD and is often exacerbated after surgery and its concomitant levodopa reduction. Apathy and reward processing are associated with the ventromedial prefrontal cortex (vmPFC), which standard targeting strategies avoid by targeting the dorsolateral STN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!