Enhancement of polymyxin B1 production by an artificial microbial consortium of and recombinant producing precursor amino acids.

Synth Syst Biotechnol

Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China.

Published: March 2024

AI Article Synopsis

  • Polymyxin B is a critical antibiotic used as a last resort in treating bacterial infections.
  • The study found that adding specific amino acids and co-culturing two bacterial strains increased the production of polymyxin B1 significantly, from 0.15 g/L to 2.21 g/L under optimal conditions.
  • These findings suggest new methods to enhance the production of polymyxin B1, potentially improving its availability for clinical use.

Article Abstract

Polymyxin B, produced by is used as the last line of defense clinically. In this study, exogenous mixture of precursor amino acids increased the level and proportion of polymyxin B1 in the total of polymyxin B analogs of CJX518-AC (PPAC) from 0.15 g/L and 61.8 % to 0.33 g/L and 79.9 %, respectively. The co-culture of strain PPAC and recombinant -leu01, which produces high levels of threonine, leucine, and isoleucine, increased polymyxin B1 production to 0.64 g/L. When strains PPAC and -leu01 simultaneously inoculated into an optimized medium with 20 g/L peptone, polymyxin B1 production was increased to 0.97 g/L. Furthermore, the polymyxin B1 production in the co-culture of strains PPAC and -leu01 increased to 2.21 g/L after optimized inoculation ratios and fermentation medium with 60 g/L peptone. This study provides a new strategy to improve polymyxin B1 production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10859264PMC
http://dx.doi.org/10.1016/j.synbio.2024.01.015DOI Listing

Publication Analysis

Top Keywords

polymyxin production
20
precursor amino
8
amino acids
8
strains ppac
8
ppac -leu01
8
polymyxin
7
production
5
enhancement polymyxin
4
production artificial
4
artificial microbial
4

Similar Publications

Functionalized Microsphere Platform Combining Nutrient Restriction and Combination Therapy to Combat Bacterial Infections.

ACS Appl Mater Interfaces

January 2025

Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei 230036, China.

The escalating prevalence of multidrug-resistant (MDR) bacterial infections has emerged as a critical global health crisis, undermining the efficacy of conventional antibiotic therapies. This pressing challenge necessitates the development of innovative strategies to combat MDR pathogens. Advances in multifunctional drug delivery systems offer promising solutions to reduce or eradicate MDR bacteria.

View Article and Find Full Text PDF
Article Synopsis
  • Acinetobacter baumannii, especially the carbapenem-resistant strains (CRAB), is a critical pathogen linked to antimicrobial resistance (AMR) and is prioritized by the WHO.
  • Phage therapy is being explored as a potential treatment for CRAB infections due to increasing resistance to conventional antibiotics.
  • A newly isolated lytic phage, vAbaIN10, exhibits effective lytic activity against CRAB in various conditions and shows promise in advancing treatment options for multidrug-resistant infections.
View Article and Find Full Text PDF

Tailored multilayer nanoparticles against resistant P. aeruginosa by disrupting the thickened mucus, dense biofilm and hyperinflammation.

J Control Release

December 2024

School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China. Electronic address:

Therapeutic challenges of chronic pulmonary infections caused by multidrug-resistant Pseudomonas aeruginosa (MDRP. aeruginosa) biofilms due to significantly enhanced antibiotic resistance. This resistance is driven by reduced outer membrane permeability, biofilm barriers, and excessive secretion of virulence factors.

View Article and Find Full Text PDF

Quantification of Antimicrobial Use on Commercial Broiler Farms in Pakistan.

Animals (Basel)

December 2024

Veterinary Epidemiology Unit, Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.

Pakistan has a large, intensive broiler production industry, where antimicrobials are extensively used for both therapeutic and prophylactic purposes. Monitoring antimicrobial use (AMU) at the farm level is crucial to guide interventions for antimicrobial stewardship. The objective of this study was to comprehensively quantify AMU on commercial broiler farms in Pakistan using different metrics.

View Article and Find Full Text PDF

Influence of agarose in semi-IPN hydrogels for sustained Polymyxin B release.

Colloids Surf B Biointerfaces

December 2024

Laboratory of Bio & Nano Materials, Drug Delivery and Controlled Release, Department of Microbiology, Faculty of Health Sciences, University of Talca, Talca, Chile. Electronic address:

Hydrogels (HGs) are 3-D polymeric networks with high water content, making them appropriate for biomedical applications such as drug delivery systems. This study examines the impact of agarose in semi-interpenetrating polymer networks (Semi-IPNs) based on poly(acrylic acid) (p(AA)), N, N' Methylenebis(acrylamide) (MBA) and agarose (AGA) on the sustained release of Polymyxin B (PolB). Agarose incorporation improved the mechanical strength, swelling behavior and drug retention capacity of the HG.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!