Spread Through Air Spaces (STAS) is involved in lung adenocarcinoma (LUAD) recurrence, where cancer cells spread into adjacent lung tissue, impacting surgical planning and prognosis assessment. Radiomics-based models show promise in predicting STAS preoperatively, enhancing surgical precision and prognostic evaluations. The present study performed network meta-analysis to assess the predictive efficacy of imaging models for STAS in LUAD. Data were systematically sourced from PubMed, Embase, Scopus, Wiley and Web of Science, according to the Cochrane Handbook for Systematic Reviews of Interventions) and A Measurement Tool to Assess systematic Reviews 2. Using Stata software v17.0 for meta-analysis, surface under the cumulative ranking area (SUCRA) was applied to identify the most effective diagnostic method. Quality assessments were performed using Cochrane Collaboration's risk-of-bias tool and publication bias was assessed using Deeks' funnel plot. The analysis encompassed 14 articles, involving 3,734 patients, and assessed 17 predictive models for STAS in LUAD. According to comprehensive analysis of SUCRA, the machine learning (ML)_Peri_tumour model had the highest accuracy (56.5), the Features_computed tomography (CT) model had the highest sensitivity (51.9) and the positron emission tomography (pet)_CT model had the highest specificity (53.9). ML_Peri_tumour model had the highest predictive performance. The accuracy was as follows: ML_Peri_tumour vs. Features_CT [relative risk (RR)=1.14; 95% confidence interval (CI), 0.99-1.32]; ML_Peri_tumour vs. ML_Tumour (RR=1.04; 95% CI, 0.83-1.30) and ML_Peri_tumour vs. pet_CT (RR=1.04; 95% CI, 0.84-1.29). Comparative analyses revealed heightened predictive accuracy of the ML_Peri_tumour compared with other models. Nonetheless, the field of radiological feature analysis for STAS prediction remains nascent, necessitating improvements in technical reproducibility and comprehensive model evaluation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10859825PMC
http://dx.doi.org/10.3892/ol.2024.14255DOI Listing

Publication Analysis

Top Keywords

model highest
16
predictive models
8
spread air
8
air spaces
8
lung adenocarcinoma
8
models stas
8
stas luad
8
systematic reviews
8
ml_peri_tumour model
8
accuracy ml_peri_tumour
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!