Deep breathing in your hands: designing and assessing a DTx mobile app.

Front Digit Health

Department of Interaction Science, SungKyunKwan University, Seoul, South Korea.

Published: January 2024

Digital Therapeutics (DTx) are experiencing rapid advancements within mobile and mental healthcare sectors, with their ubiquity and enhanced accessibility setting them apart as uniquely effective solutions. In this evolving context, our research focuses on deep breathing, a vital technique in mental health management, aiming to optimize its application in DTx mobile platforms. Based on well-founded theories, we introduced a gamified and affordance-driven design, facilitating intuitive breath control. To enhance user engagement, we deployed the Mel Frequency Cepstral Coefficient (MFCC)-driven personalized machine learning method for accurate biofeedback visualization. To assess our design, we enlisted 70 participants, segregating them into a control and an intervention group. We evaluated Heart Rate Variability (HRV) metrics and collated user experience feedback. A key finding of our research is the stabilization of the Standard Deviation of the NN Interval (SDNN) within Heart Rate Variability (HRV), which is critical for stress reduction and overall health improvement. Our intervention group observed a pronounced stabilization in SDNN, indicating significant stress alleviation compared to the control group. This finding underscores the practical impact of our DTx solution in managing stress and promoting mental health. Furthermore, in the assessment of our intervention cohort, we observed a significant increase in perceived enjoyment, with a notable 22% higher score and 10.69% increase in positive attitudes toward the application compared to the control group. These metrics underscore our DTx solution's effectiveness in improving user engagement and fostering a positive disposition toward digital therapeutic efficacy. Although current technology poses challenges in seamlessly incorporating machine learning into mobile platforms, our model demonstrated superior effectiveness and user experience compared to existing solutions. We believe this result demonstrates the potential of our user-centric machine learning techniques, such as gamified and affordance-based approaches with MFCC, which could contribute significantly to the field of mobile mental healthcare.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10860399PMC
http://dx.doi.org/10.3389/fdgth.2024.1287340DOI Listing

Publication Analysis

Top Keywords

machine learning
12
deep breathing
8
dtx mobile
8
mobile mental
8
mental healthcare
8
mental health
8
mobile platforms
8
user engagement
8
intervention group
8
heart rate
8

Similar Publications

Introduction: Wearables are electronic devices worn on the body to collect health data. These devices, like smartwatches and patches, use sensors to gather information on various health parameters. This review highlights current use and the potential benefit of wearable technology in patients with inflammatory bowel disease (IBD).

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is a prevalent chronic inflammatory airway disease with high incidence and significant disease burden. R-loops, functional chromatin structure formed during transcription, are closely associated with inflammation due to its aberrant formation. However, the role of R-loop regulators (RLRs) in COPD remains unclear.

View Article and Find Full Text PDF

This study investigates the electronic properties and photovoltaic (PV) performance of newly designed bithiophene-based dyes, focusing on their light harvesting efficiency (LHE), open-circuit voltage (V), fill factor (FF), and short-circuit current density (J).These new dyes are designed with the help of machine learning (ML) to design best donor acceptor designs. For this, we collect 2567 differenr electron donor groups and calculated their bandgap with the help of Random Forest (RF) Regression method.

View Article and Find Full Text PDF

IL-33, a neutrophil extracellular trap-related gene involved in the progression of diabetic kidney disease.

Inflamm Res

January 2025

Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China.

Background: Chronic inflammation is well recognized as a key factor related to renal function deterioration in patients with diabetic kidney disease (DKD). Neutrophil extracellular traps (NETs) play an important role in amplifying inflammation. With respect to NET-related genes, the aim of this study was to explore the mechanism of DKD progression and therefore identify potential intervention targets.

View Article and Find Full Text PDF

Soil microbiota plays crucial roles in maintaining the health, productivity, and nutrient cycling of terrestrial ecosystems. The persistence and prevalence of heterocyclic compounds in soil pose significant risks to soil health. However, understanding the links between heterocyclic compounds and microbial responses remains challenging due to the complexity of microbial communities and their various chemical structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!