Coated Blade Spray Ion Mobility Spectrometry.

Anal Chem

Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz University Hannover, Appelstraße 9A, 30167 Hannover, Germany.

Published: February 2024

Coated blade spray (CBS) is a microextraction technology with blades that serve as both the extraction device and the electrospray ionization (ESI) emitter. CBS is designed for easy and rapid extraction of analytes in complex matrices as well as ESI directly from the blade. The technology selectively enriches the components of interest on a coated metal blade. The coating consists of a selective polymer. So far, CBS has only been coupled with mass spectrometry but never with ion mobility spectrometry (IMS), where ions are separated and detected based on their ion mobility in a drift gas under the influence of an electric field, while instrumentation is compact and easy to operate so that the advantages of CBS can be particularly well exploited. Therefore, this work focuses on coupling CBS with our previously described ESI-IMS. The ion mobility spectrometer has a drift length of only 75 mm and provides a high resolving power of = 100. In this work, preliminary measurements of CBS-IMS are presented. In particular, the detection of benzodiazepines and ketamine in drinks and the pesticide isoproturon in water samples is shown to demonstrate the feasibility of CBS-IMS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10902811PMC
http://dx.doi.org/10.1021/acs.analchem.3c05586DOI Listing

Publication Analysis

Top Keywords

ion mobility
16
coated blade
8
blade spray
8
mobility spectrometry
8
cbs
5
ion
4
spray ion
4
mobility
4
spectrometry coated
4
spray cbs
4

Similar Publications

Gel electrolytes have emerged as a promising solution for enhancing the performance of zinc-ion batteries (ZIBs), particularly in flexible devices. However, they face challenges such as low-temperature inefficiency, constrained ionic conductivity, and poor mechanical strength. To address these issues, this study presents a novel PAMCD gel electrolyte with tunable freezing point and mechanical properties for ZIBs, blending the high ionic conductivity of polyacrylamide with the anion interaction capability of β-cyclodextrin.

View Article and Find Full Text PDF

Role of NaCO as Nucleation Seeds to Accelerate the CO Uptake Kinetics of MgO-Based Sorbents.

JACS Au

December 2024

Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 8092 Zürich, Switzerland.

There is an urgent need for inexpensive, functional materials that can capture and release CO under industrial conditions. In this context, MgO is a highly promising, earth-abundant CO sorbent. However, despite its favorable carbonation thermodynamics and potential for high gravimetric CO uptakes, MgO-based CO sorbents feature slow carbonation kinetics, limiting their CO uptake during typical industrial contact times.

View Article and Find Full Text PDF

Douchiba (DCB) is a nutritious food rich in various functional components such as Tetramethylpyrazine (TTMP), and the strain fermentation is crucial for enhancing its quality. This work utilized S2-2 and S6-J1 with high TTMP production for fermentation of soybeans to optimize the pre-fermentation process and to evaluate the flavor quality of mature DCB. The concentration of TTMP in DCB fermented by mixed microbial (MG) was 2.

View Article and Find Full Text PDF

Ionic Crosslinking of Linear Polyethyleneimine Hydrogels with Tripolyphosphate.

Gels

December 2024

Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Ciudad Autónoma de Buenos Aires 1113, Argentina.

In this work, the mechanical properties of hydrogels based on linear polyethyleneimine (PEI) chemically crosslinked with ethyleneglycoldiglycidyl ether (EGDE) were improved by the ionic crosslinking with sodium tripolyphosphate (TPP). To this end, the quaternization of the nitrogen atoms present in the PEI structure was conducted to render a network with a permanent positive charge to interact with the negative charges of TPP. The co-crosslinking process was studied by H high-resolution magic angle spinning (H HRMAS) NMR and X-ray photoelectron spectroscopy (XPS) in combination with organic elemental analysis and inductively coupled plasma mass spectrometry (ICP-MS).

View Article and Find Full Text PDF

It is widely accepted that mobile ions are responsible for the slow electronic responses observed in metal halide perovskite-based optoelectronic devices, and strongly influence long-term operational stability. Electrical characterisation methods mostly observe complex indirect effects of ions on bulk/interface recombination, struggle to quantify the ion density and mobility, and are typically not able to fully quantify the influence of the ions upon the bulk and interfacial electric fields. We analyse the bias-assisted charge extraction (BACE) method for the case of a screened bulk electric field, and introduce a new characterisation method based on BACE, termed ion drift BACE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!