A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A supervised learning method for classifying methylation disorders. | LitMetric

AI Article Synopsis

  • DNA methylation is a key epigenetic change in humans, used as a biomarker in diagnosing various diseases, but current methods overlook age and sex-specific patterns.
  • The study analyzed DNA methylation from blood samples of healthy individuals and patients with specific syndromes, introducing a Generalized Additive Model to assess 700,000 CpG sites while accounting for age and sex differences.
  • The research achieved a high prediction accuracy of 0.96 in identifying abnormal methylation patterns, demonstrating the effectiveness of their custom machine learning pipeline for diagnosing potential congenital disorders.

Article Abstract

Background: DNA methylation is one of the most stable and well-characterized epigenetic alterations in humans. Accordingly, it has already found clinical utility as a molecular biomarker in a variety of disease contexts. Existing methods for clinical diagnosis of methylation-related disorders focus on outlier detection in a small number of CpG sites using standardized cutoffs which differentiate healthy from abnormal methylation levels. The standardized cutoff values used in these methods do not take into account methylation patterns which are known to differ between the sexes and with age.

Results: Here we profile genome-wide DNA methylation from blood samples drawn from within a cohort composed of healthy controls of different age and sex alongside patients with Prader-Willi syndrome (PWS), Beckwith-Wiedemann syndrome, Fragile-X syndrome, Angelman syndrome, and Silver-Russell syndrome. We propose a Generalized Additive Model to perform age and sex adjusted outlier analysis of around 700,000 CpG sites throughout the human genome. Utilizing z-scores among the cohort for each site, we deployed an ensemble based machine learning pipeline and achieved a combined prediction accuracy of 0.96 (Binomial 95% Confidence Interval 0.868[Formula: see text]0.995).

Conclusion: We demonstrate a method for age and sex adjusted outlier detection of differentially methylated loci based on a large cohort of healthy individuals. We present a custom machine learning pipeline utilizing this outlier analysis to classify samples for potential methylation associated congenital disorders. These methods are able to achieve high accuracy when used with machine learning methods to classify abnormal methylation patterns.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10863277PMC
http://dx.doi.org/10.1186/s12859-024-05673-1DOI Listing

Publication Analysis

Top Keywords

age sex
12
machine learning
12
dna methylation
8
outlier detection
8
cpg sites
8
abnormal methylation
8
methylation patterns
8
sex adjusted
8
adjusted outlier
8
outlier analysis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!