A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

New insights into the effect of pyrolysis temperature on the spectroscopy properties of dissolved organic matter in manure-based biochar. | LitMetric

New insights into the effect of pyrolysis temperature on the spectroscopy properties of dissolved organic matter in manure-based biochar.

Environ Sci Pollut Res Int

Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environment Sciences, No. 8 An Wai Da Yang Fang, Chaoyang District, Beijing, 100012, China.

Published: March 2024

Dissolved organic matter (DOM) derived from biochar takes a crucial role in transport and bioavailability toward contaminants; hence, it is undeniable that a thorough analysis of its properties is important. So far, the effect of pyrolysis temperature on the functional groups, components, and evolutionary sequence of manure-based biochar DOM has not been adequately investigated. Here, DOM was released from two typical livestock manures (cow and pig) at five pyrolysis temperatures (300 ~ 700°C), and it was explored in depth with the aid of moving window 2D correlation spectroscopy (MW-2D-COS) and heterogeneous 2D correlation spectroscopy (hetero-2D-COS). The results demonstrated that the concentration, aromaticity, and hydrophobicity of DOM were greater at high temperatures, and more DOM was liberated from cow manure-based biochar at identical temperature. Protein-like compounds dominated at high temperatures. The pyrolysis temperatures of final configuration transformation points of the fulvic acid-like component and the aromatic ring C=C in DOM were 400°C and 500°C, respectively. Moreover, Fourier transform infrared spectroscopy combined with two-dimensional correlation analysis indicated that the functional group evolution of DOM depends on the pyrolysis temperature and feedstock type. The study provides a new perspective on manure management and environmental applications of biochar.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-32240-1DOI Listing

Publication Analysis

Top Keywords

pyrolysis temperature
12
manure-based biochar
12
dissolved organic
8
organic matter
8
pyrolysis temperatures
8
correlation spectroscopy
8
high temperatures
8
dom
7
biochar
5
insights pyrolysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!