Endothelial cells and macrophages as allies in the healthy and diseased brain.

Acta Neuropathol

Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany.

Published: February 2024

Diseases of the central nervous system (CNS) are often associated with vascular disturbances or inflammation and frequently both. Consequently, endothelial cells and macrophages are key cellular players that mediate pathology in many CNS diseases. Macrophages in the brain consist of the CNS-associated macrophages (CAMs) [also referred to as border-associated macrophages (BAMs)] and microglia, both of which are close neighbours or even form direct contacts with endothelial cells in microvessels. Recent progress has revealed that different macrophage populations in the CNS and a subset of brain endothelial cells are derived from the same erythromyeloid progenitor cells. Macrophages and endothelial cells share several common features in their life cycle-from invasion into the CNS early during embryonic development and proliferation in the CNS, to their demise. In adults, microglia and CAMs have been implicated in regulating the patency and diameter of vessels, blood flow, the tightness of the blood-brain barrier, the removal of vascular calcification, and the life-time of brain endothelial cells. Conversely, CNS endothelial cells may affect the polarization and activation state of myeloid populations. The molecular mechanisms governing the pas de deux of brain macrophages and endothelial cells are beginning to be deciphered and will be reviewed here.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10861611PMC
http://dx.doi.org/10.1007/s00401-024-02695-0DOI Listing

Publication Analysis

Top Keywords

endothelial cells
32
cells macrophages
12
endothelial
8
cells
8
brain endothelial
8
macrophages endothelial
8
macrophages
7
cns
6
brain
5
macrophages allies
4

Similar Publications

Understanding the Importance of the Small Artery Media-Lumen Ratio: Past and Present.

Basic Clin Pharmacol Toxicol

February 2025

Department of Biomedicine, Aarhus University, Aarhus, Denmark.

The media-lumen diameter ratio of small arteries is increased in hypertension, diabetes and obesity. It is likely that both shear stress on the endothelial cells, transmural pressure and smooth muscle cell tone are important for the altered vascular structure. However, the precise interaction and importance of these factors are incompletely understood.

View Article and Find Full Text PDF

Rapid Preparation of Collagen/Red Blood Cell Membrane Tubes for Stenosis-Free Vascular Regeneration.

ACS Nano

January 2025

Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, PR China.

Extracellular matrix (ECM)-based small-diameter vascular grafts (SDVGs, inner diameter (ID) < 6 mm) hold great promise for clinical applications. However, existing ECM-based SDVGs suffer from limited donor availability, complex purification, high cost, and insufficient mechanical properties. SDVGs with ECM-like structure and function, and good mechanical properties were rapidly prepared by optimizing common materials and preparation, which can improve their clinical prospects.

View Article and Find Full Text PDF

Endothelial Gsα deficiency promotes ferroptosis and exacerbates atherosclerosis in apolipoprotein E-deficient mice via the inhibition of NRF2 signaling.

Acta Pharmacol Sin

January 2025

State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China.

The importance of ferroptosis in the occurrence and progression of atherosclerosis is gradually being recognized. The stimulatory G protein α subunit (Gsα) plays a crucial role in the physiology of endothelial cells (ECs). Our previous study showed that endothelial Gsα could regulate angiogenesis and preserve endothelial permeability.

View Article and Find Full Text PDF

[Molecular mechanism of Xinyang Tablets in improving myocardial fibrosis in uremic cardiomyopathy based on single-cell sequencing technology].

Zhongguo Zhong Yao Za Zhi

December 2024

State Key Laboratory of Traditional Chinese Medicine Syndrome, the First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou 510407, China Geriatrics Department, the First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou 510407, China Lingnan Medical Research Center, Guangzhou University of Chinese Medicine Guangzhou 510405, China Guangdong Clinical Research Institute of Chinese Medicine Guangzhou 510407, China.

This study aimed to investigate the ameliorative effect of Xinyang Tablets on myocardial fibrosis in uremic cardiomyopathy(UCM) using single-cell sequencing technology. UCM mouse models were established by 5/6 nephrectomy(NPM) and randomly divided into the model group, Xinyang Tablets group, and sham-operated(sham) group as the control. The Xinyang Tablets group received postoperative interventions of Xinyang Tablets(0.

View Article and Find Full Text PDF

Elucidating emerging signaling pathways driving endothelial dysfunction in cardiovascular aging.

Vascul Pharmacol

January 2025

Cellular and Molecular Cardiovascular Physiology and Pathophysiology Laboratory, Department of Biology, E. and E. S. (DiBEST), University of Calabria, Arcavacata di Rende, Cosenza, Italy; National Institute of Cardiovascular Research (INRC), Bologna, Italy. Electronic address:

The risk for developing cardiovascular diseases dramatically increases in older individuals, and aging vasculature plays a crucial role in determining their morbidity and mortality. Aging disrupts endothelial balance between vasodilators and vasoconstrictors, impairing function and promoting pathological vascular remodeling. In this Review, we discuss the impact of key and emerging molecular pathways that transduce aberrant inflammatory signals (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!