Structurally robust lithium-rich layered oxides for high-energy and long-lasting cathodes.

Nat Commun

Department of Materials Science and Engineering, Institute for Rechargeable Battery Innovations, Research Institute of Advanced Materials, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.

Published: February 2024

AI Article Synopsis

  • O2-type lithium-rich layered oxides effectively prevent the migration of transition metals and voltage decay, making them ideal for studying oxygen redox properties.
  • A new series of these oxides shows minimal structural changes and retains voltage stability even with high oxygen participation.
  • The study highlights the impact of oxygen redox on the structure and performance, showing that balancing redox capabilities ensures high voltage and capacity while revealing a new mechanism for capacity fading that differs from past findings.

Article Abstract

O2-type lithium-rich layered oxides, known for mitigating irreversible transition metal migration and voltage decay, provide suitable framework for exploring the inherent properties of oxygen redox. Here, we present a series of O2-type lithium-rich layered oxides exhibiting minimal structural disordering and stable voltage retention even with high anionic redox participation based on the nominal composition. Notably, we observe a distinct asymmetric lattice breathing phenomenon within the layered framework driven by excessive oxygen redox, which includes substantial particle-level mechanical stress and the microcracks formation during cycling. This chemo-mechanical degradation can be effectively mitigated by balancing the anionic and cationic redox capabilities, securing both high discharge voltage (~ 3.43 V vs. Li/Li) and capacity (~ 200 mAh g) over extended cycles. The observed correlation between the oxygen redox capability and the structural evolution of the layered framework suggests the distinct intrinsic capacity fading mechanism that differs from the previously proposed voltage fading mode.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10861561PMC
http://dx.doi.org/10.1038/s41467-024-45490-xDOI Listing

Publication Analysis

Top Keywords

lithium-rich layered
12
layered oxides
12
oxygen redox
12
o2-type lithium-rich
8
layered framework
8
layered
5
redox
5
structurally robust
4
robust lithium-rich
4
oxides high-energy
4

Similar Publications

Coherent Strain-Inhibiting Phase Construction of Lithium-Rich Manganese-Based Oxide Toward High Mechanochemical Stability.

J Am Chem Soc

January 2025

Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.

A layered lithium-rich manganese-based oxide cathode, containing 3̅ (LiTMO, TM = Mn, Ni, Co) and 2/ (LiMnO) nanodomains, utilizes both transition metals and oxygen redox to yield substantial energy density. However, the inherent heterogeneous nature and distinct nanodomain redox chemistries of layered lithium-rich oxides will inevitably cause pernicious lattice strain and structural displacement, which can hardly be eliminated by conventional doping or coating strategies and result in accelerated performance decay. Herein, we incorporate a strain-inhibiting perovskite phase coherently grown within the layered structure to effectively restrain the displacement and lattice strain during uneven Li-ion extraction.

View Article and Find Full Text PDF

Parasitic structure defect blights sustainability of cobalt-free single crystalline cathodes.

Nat Commun

January 2025

Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA.

Recent efforts to reduce battery costs and enhance sustainability have focused on eliminating Cobalt (Co) from cathode materials. While Co-free designs have shown notable success in polycrystalline cathodes, their impact on single crystalline (SC) cathodes remains less understood due to the significantly extended lithium diffusion pathways and the higher-temperature synthesis involved. Here, we reveal that removing Co from SC cathodes is structurally and electrochemically unfavorable, exhibiting unusual voltage fade behavior.

View Article and Find Full Text PDF

The design of cathode/electrolyte interfaces in high-energy density Li-ion batteries is critical to protect the surface against undesirable oxygen release from the cathodes when batteries are charged to high voltage. However, the involvement of the engineered interface in the cationic and anionic redox reactions associated with (de-)lithiation is often ignored, mostly due to the difficulty to separate these processes from chemical/catalytic reactions at the cathode/electrolyte interface. Here, a new electron energy band diagrams concept is developed that includes the examination of the electrochemical- and ionization- potentials evolution upon batteries cycling.

View Article and Find Full Text PDF

Functionalized separators are expected to serve as protective barriers to conquer the lithium dendrite penetration in lithium metal batteries. Herein, a novel self-supporting separator material has been successfully synthesized based on the cellulose acetate and Keggin-type polyoxometalate HPMoO·HO (denoted as CA/PMo). The incorporation of PMo facilitates the transformation of the original finger-like structure of the CA separator into a uniform three-dimensional porous grid architecture, which is more effective in inhibiting the growth of lithium dendrites.

View Article and Find Full Text PDF

The problem of rapid degradation of the operating voltage and discharge specific capacity of lithium-rich layered oxide (LRMs) cathode materials is a major constraint for their commercial application. In this paper, CoS coating with a 3D layered structure assisted by PVP is used to enhance the cycle life and rate performance of the LRMs material. The introduction of PVP has the following effects: (1) it reduces the solubility of CoS in the electrolyte solution and forms a stable CoS coating, and (2) it acts as a nitrogen-containing carbon matrix material and the heteroatomic dopant, and can provide more active sites to improve the conductivity of CoS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!