This study aimed to investigate the different regulatory mechanisms of euryhaline fish under regular hyperosmotic and extreme hyperosmotic stress. The OmB (Oreochromis mossambicus brain) cells were exposed to three treatments: control, regular hyperosmotic stress and extreme hyperosmotic stress. After 12 h exposure, proteomics, metabolomics analyses and integrative analyses were explored. Both kinds of stress lead to lowering cell growth and morphology changes, while under regular hyperosmotic stress, the up-regulated processes related with compatible organic osmolytes synthesis are crucial strategy for the euryhaline fish cell line to survive; On the other hand, under extreme hyperosmotic stress, the processes related with cell apoptosis and cell cycle arrest are dominant. Furthermore, down-regulated pyrimidine metabolism and several ribosomal proteins partially participated in the lowered cell metabolism and increased cell death under both kinds of hyperosmotic stress. The PI3K-Akt and p53 signaling pathways were involved in the stagnant stage of cell cycles and induction of cell apoptosis under both kinds of hyperosmotic stress. However, HIF-1, FoxO, JAK-STAT and Hippo signaling pathways mainly contribute to disrupting the cell cycle, metabolism and induction of cell apoptosis under extreme hyperosmotic stress. SIGNIFICANCE: In the past, the research on fish osmoregulation mainly focused on the transcription factors and ion transporters of osmoregulation, the processes between osmotic sensing and signal transduction, and the associations between signaling pathways and regulation processes have been poorly understood. Investigating fish cell osmoregulation and potential signal transduction pathways is necessary. With the advancements in omics research, it is now feasible to investigate the relationship between environmental stress and molecular responses. In this study, we aimed to explore the signaling pathways and substance metabolism mode during hyper-osmoregulation in OmB cell line, to reveal the key factors that are critical to cell osmoregulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jprot.2024.105113 | DOI Listing |
Ocul Surf
January 2025
Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk, Republic of Korea, 37673; Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk, Republic of Korea, 37673. Electronic address:
Purpose: To introduce and validate quantitative oblique back-illumination microscopy (qOBM) as a label-free, high-contrast imaging technique for visualizing conjunctival goblet cells (GCs) and assessing their functional changes.
Methods: qOBM was developed in conjunction with moxifloxacin-based fluorescence microscopy (MBFM), which was used for validating GC imaging. Initial validation was conducted with polystyrene beads, followed by testing on normal mouse conjunctiva under both ex-vivo and in-vivo conditions.
Pharmaceutics
January 2025
Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, SI, Italy.
(L.) DC., commonly known as Japanese pepper, is a deciduous shrub native to East Asia.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Department of Biotechnology, University of Verona, Verona, Italy.
Calcium (Ca)-dependent signalling plays a well-characterised role in the perception and response mechanisms to environmental stimuli in plant cells. In the context of a constantly changing environment, it is fundamental to understand how crop yield and microalgal biomass productivity are affected by external factors. Ca signalling is known to be important in different physiological processes in microalgae but many of these signal transduction pathways still need to be characterised.
View Article and Find Full Text PDFOcul Surf
January 2025
Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, 325000, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Zhejiang, 325000, China. Electronic address:
Unlabelled: The activation of the NLRP3 inflammasome by hyperosmotic stress is a critical pathophysiological response in dry eye disease (DED), driving the chronic cycle of inflammation on the ocular surface. The specific mechanism underlying hyperosmotic mechanical stimulation activates the NLRP3 inflammasome remains unclear. This study provides evidence that PIEZO1, a mechanosensitive ion channel, functions as the primary receptor for corneal epithelial cells in sensing mechanical stimulation induced by tear hyperosmolarity.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China. Electronic address:
Autophagy is a conserved and unique degradation system in eukaryotic cells, which plays crucial roles in the growth, development and pathogenesis of Fungi. Despite that, it is poorly understood in Fusarium graminearum currently. Here, we identified an autophagy gene FgAtg27 from F.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!