Biofilm and EPS characterization of a rhizobacterial isolate BC-II-20 was done using biophysical techniques. SEM revealed surface morphology of EPS powder to be irregular porous web-like structure. FTIR spectra showed peaks of the polymeric carbohydrate functional groups with probable role in imparting biological properties to EPS. XRD analysis showed signal at 22 (2θ) and confirms its amorphous or semi-crystalline nature. EPS derived from bacterial consortium gradually increased under 200 mM, 400 mM, 600 mM and 800 mM NaCl and SEM-EDAX analysis of EPS showed increase in Na & Cl peaks under the above salt concentrations, depicting EPS-NaCl binding. Triticum aestivum plants under 200 mM NaCl stress with different combinations of treatments showed that bacterial consortium provides tolerance. Under 200 mM salt stress the shoot length was 7.74 cm and total chlorophyll was 4.16 mg gFw of the uninoculated plants whereas inoculated ones were 9.94 cm and 5.62 mg gFw respectively. Under salinity stress, membrane stability index was increased from 47 % to 61 % and electrolyte leakage was decreased to 48 % from 64 %, after inoculation with bacterial consortium. Therefore, consortium comprising of these halotolerant and biofilm forming, EPS producing bioinoculants provides salt tolerance and can be exploited as a sustainable alternative for stress tolerance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.130049DOI Listing

Publication Analysis

Top Keywords

bacterial consortium
16
biofilm forming
8
salinity stress
8
triticum aestivum
8
eps
6
consortium
5
stress
5
forming exopolysaccharide
4
exopolysaccharide producing
4
producing halotolerant
4

Similar Publications

Inosine 5'-monophosphate dehydrogenase (IMPDH) is a promising antibiotic target. This enzyme catalyzes the NAD-dependent oxidation of inosine 5'-monophosphate (IMP) to xanthosine 5'-monophosphate (XMP), which is the rate-limiting step in guanine nucleotide biosynthesis. Bacterial IMPDH-specific inhibitors have been developed that bind to the NAD site.

View Article and Find Full Text PDF

Key bacterial vaginosis-associated bacteria influence each other's growth in biofilms in rich media and media simulating vaginal tract secretions.

Biofilm

June 2025

Centre of Biological Engineering (CEB), Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal.

Bacterial vaginosis (BV) is a very common gynaecologic condition affecting women of reproductive age worldwide. BV is characterized by a depletion of lactic acid-producing species and an increase in strict and facultative anaerobic bacteria that develop a polymicrobial biofilm on the vaginal epithelium. Despite multiple decades of research, the etiology of this infection is still not clear.

View Article and Find Full Text PDF

This article presents the first implementation of a proportional-integral-derivative (PID) biomolecular controller within a consortium of different cell populations, aimed at robust regulation of biological processes. By leveraging the modularity and cooperative dynamics of multiple engineered cell populations, we develop a comprehensive analysis of the performance and robustness of P, PD, PI and PID control architectures. Our theoretical findings, validated through experiments using the BSim agent-based simulation platform for bacterial populations, demonstrate the robustness and effectiveness of our multicellular PID control strategy.

View Article and Find Full Text PDF

Interleukin-17: A pleiotropic cytokine implicated in inflammatory, infectious, and malignant disorders.

Cytokine Growth Factor Rev

January 2025

MCW Cancer Center and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA; WIN Consortium, Paris, France; University of Nebraska, Lincoln, NE, USA. Electronic address:

IL-17A, referred to as IL-17, is the founding member of a family of pro-inflammatory cytokines, including IL-17B, IL-17C, IL-17D, IL-17E (or IL-25), and IL-17F, which act via receptors IL-17RA to IL-17RE, and elicit potent cellular responses that impact diverse diseases. IL-17's interactions with various cytokines include forming a heterodimer with IL-17F and being stimulated by IL-23's activation of Th17 cells, which can lead to inflammation and autoimmunity. IL-17 is implicated in infectious diseases and inflammatory disorders such as rheumatoid arthritis and psoriasis, promoting neutrophil recruitment and anti-bacterial immunity, but potentially exacerbating fungal and viral infections, revealing its dual role as protective and pathologic.

View Article and Find Full Text PDF

Dealing with oil spills is urgent, and bioaugmentation is a low-cost and environmentally friendly method. However, little research has been done on the remediation effect of bioaugmentation in oil-polluted environments with bottom seawater microorganisms. This work constructed the bottom seawater (S) group and surface seawater environment (T) group to study the oil degradation ability and the microbial community successions tendency with the function of integrated bacterial consortium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!