Enzymatically catalyzed reduction of metals by bacteria has potential application value to uranium-mine wastewater. However, its practical implementation has long been restricted by its intrinsic drawbacks such as low efficiency and long treatment-time. This study aims to explore the effect of electrodes on U (VI) removal efficiency by a purified indigenous bacteria isolated from a uranium mining waste pile in China. The effects of current intensity, pH, initial U (Ⅵ) concentration, initial dosage of bacteria and contact time on U (Ⅵ) removal efficiency were investigated via static experiments. The results show that U(VI) removal rate was stabilized above 90% and the contact time sharply shortened within 1 h when utilized nickel-graphite electrode as an electron donor. Over the treatment ranges investigated maximum removal of U (Ⅵ) was 96.04% when the direct current was 10 mA, pH was 5, initial U (Ⅵ) concentration was 10 mg/L, and dosage of Leifsonia sp. was 0.25 g/L. In addition, it is demonstrated that U (VI) adsorption by Leifsonia sp. is mainly chemisorption and/or reduction as the quasi-secondary kinetics is more suitable for fitting the process. FTIR results indicated that amino, amide, aldehyde and phosphate -containing groups played a role in the immobilization of U (VI) more or less. SEM and EDS measurements revealed that U appeared to be more obviously aggregated on the surface of cells. A plausible explanation for this, supported by XPS, is that U (VI) was partially reduced to U (IV) by direct current then precipitated on the cells surface. These observations reveal that Nickel-graphite electrode exhibited good electro-chemical properties and synergistic capacity with Leifsonia sp. which potentially provides a new avenue for uranium enhanced removal/immobilization by indigenous bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvrad.2024.107398DOI Listing

Publication Analysis

Top Keywords

nickel-graphite electrode
12
electrode electron
8
electron donor
8
removal efficiency
8
indigenous bacteria
8
initial Ⅵ
8
Ⅵ concentration
8
contact time
8
direct current
8
removal
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!