The oxygen evolution reaction (OER) is an important half-reaction in electrochemical hydrogen production (EHP) and rechargeable metal-air batteries. However, the sluggish OER kinetics has seriously impeded their performance. Herein, we report a bioelectrochemical cascade system composed of glucose oxidase (GOx)-functionalized N-doped porous carbon nanofibers to replace OER in EHP and rechargeable Zn-air batteries (ZABs) applications. In this cascade system, GOx catalyzes oxidation of glucose to produce value-added gluconic acid accompanied with the generation of HO under aerobic conditions. The subsequent electrocatalytic oxidation of HO replacing the OER results in an onset voltage below 1.10 V for EHP, and a low charging voltage of 1.35 V as well as a small charging/discharging voltage gap of ∼ 280 mV over 170 h for ZABs in neutral aqueous electrolytes. The advantages of employing the innovative bioelectrochemical cascade reaction are demonstrated in EHP and ZABs, achieving the full utilization of biomass energy in energy-saving electrochemical systems for energy storage and conversion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioelechem.2024.108666 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!